DirectFB 1.4.17

Software Users Guide v1.3

Broadcom Corporation Proprietary and Confidential

Broadcom Corporation
5300 California Avenue
Irvine, California, USA 92677
Phone: 949-926-5000

Fax: 949-926-5203

Web: www.broadcom.com

DirectFB 1.4.17 Software Users Guide version 1.3

Revision History

Date Change Description
Revision
1.0 May 14, 2012 Updated from 1.4.15 document
1.1 May 23, 2012 1.4.17 changes
1.2 June 22, 2012 Updated template and minor fixes
1.3 October 18, 2012 Updated multi app & XS guidance

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 i

DirectFB 1.4.17 Software Users Guide version 1.3

Table of Contents

2] =T =T o T T 3
INEFOAUCTION .ttt ettt s bt e e st e e e sabe e e e sbbaaeesabaaessssaeessassaeessnnsee sasseeesnnes 4
OVBIVIBW .ttt ettt ettt et e s ettt e e e s s e aaa b bbb et e e e e s s e asbbeaeeeeeessaassbaaaaeessaaansssanaaaeses brneeeessnnn 4
AUGIENCE .ttt s ettt e sttt e e e st bee e e saataeessabtaeesaabtaeesaabtaeesasbaeessnabbaeesanss sesraeesaans 4

e T =T [UL PSPPI 4
Main Changes From DirectFB-1.4.15 Phase 2.1.......c..cvieiiiieieccieee ettt e tee e tre e e e van e e e vanee e 5
D] YT o] LT PSPPI 7
Ta 1S = 1 = o o TSR 8
INEFOAUCTION .ttt ettt s st e e s st e e e s st b e e e s s bt e e e ssbaaeesabaaeesasbbaeesnnsaee sasaeenn 8

2 WY1 o [T o =T PUP 9
Step 1: Host Maching t00IS ChECK.........uei i e eaaee s 9
Step 2: ENVIronmeNnt Variableso 9
Step 3: Driver DUl ChECKcoi et et e e e re e e s re e e e enree e e ennees 10
Step 4A: Building DirectFB in single-application Modeeeevcveeeieiiieiiciieee e 11
Step 4B: Building DirectFB in multi-application MOdecoooeiiiiiiiieeeeeeceeeee e 12
Step 4C: BUIldiNg DIrECEFB-XSviiiiiiiiee ettt ettt eetee e et e e e et e e e rare e e e s tta e e e snnraeesenssaeeesnraeeesnnens 13

S TUT 1o [T T DT =Yor o o= T T SRR 14
BUIldiNg DIr@CtFB @XamPIESvveiiiiieeieecieee ettt eetee e ettt e e e e ctre e e e ette e e e e ateeeeeabaeeeessseeeeansaaeennns 14

S TUTT Lo T Y= TSRSt 14
BUilding INSIiZNIa tEST NAINESS ...eeiieeieeeecciiee ettt e e e e e e s are e e e s bae e e e eateeeeenneaeeeans 14
BUIlAING TAChO tEST NAINESSeveiieiieee ettt ettt e et e e et e e e e are e e e taee e e saraeeeenseaeesans 15
Building external appliCatioNns.........ocoo it e e e e e e e e e e e e e e aaraaaeeaaeas 15
Additional MAKe LarZEtS...ccc e e e e e e e tre e e e e rre e e e e nra e e e enraeeeennees 16
Additional MaKe flags......cccuiieieee e et e e e e e et e e e e e e e e rbraaeeaeeeennees 18
Running DirectFB on the target platform ... e 24
Standard DirectFB single application MOde..........cooiii i 24
DirectFB multi-application MOooiiiiiiiiiiieriee e 25
DirectFB-XS (Nexus SUrface COMPOSITON)ccciiiieeiiiieeeeieiieeeeeiee e ecree e e e tre e e e ebreeeeenreeeeesabaeeeenreeeens 26
Running texture mapped graphics appliCationseeeeiieeeiiiiiiiee e 27
Running OpenGL ES 1.0 graphics appliCations........ccuueiiiiciiiieicciee e 27
Running OpenGL ES 2.0 graphics applications...........uviiiieeiiieciiiiiee et 28
Running SaWMan (multi-application MOde)cocveeiiieiiie e 29
Running with kernel-space (Proxy mode) driVErs..........cccueeeeciereeeiiieeee e eecree e e 29
RUNNINg With USEr-mode AriVEIS ... e e e e e e areae e 29
RUNNING DIr€CEFB @XAMPIESeveiieiieee ettt ettt ee et e e e ctre e e e e tte e e e e bre e e e abaeeeeensaeesanssaeeenns 30
RUNNING F4DFB.....uuuiiiiiiiiiiiiiiiietiittettteateeaareerereereareeseeasreeareesteeareererereeeerrareeereeerererererereerrereerareerereree o 30
RUNNING QUAIO/VIAEO TESES ...euveiuiiiieeieieeteie sttt ettt ettt e s be e steeseenteeseesassaesneneas 30
(o1 1V] o F- 1o | I 1 o S UPPR 30

o [=Tole Yo LY =T VL= oo | o SRR 31

o [YoloTe IR el 11T ol Ao | 1 < JPUU PR PUPPRNS 31
Run-time environment Variablesooeieei et 32
Additional INFOrMAtioN.......iiiiiiecee e et e s e e sae e e e e e saaeenns 33
Build system infOrmMation........ ..o e e e e e e e e e e raaeeaaeean 33
Multi-application sUPPOrt With DIr€CEFBvvieiiiieee e nreee e 34
Running non-DirectFB and DirectFB appliCations........ccccceeeeciiiiiiie i 35

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 1

DirectFB 1.4.17 Software Users Guide version 1.3

Multi-application support With DIr€@CtFB-XS ..ottt et e e e 39
DirectFB memory ManagemMENTt.. ... ettt e e e e s s s s e e e s s e nneeeeeeas 41
Changes t0 DIFECEFB-1.4.17 ...oocooeieieeee ettt e e e e e et e e e e e e e e e s abbaeeea e e e e e sstbeaeeaaeeeennsreneas 42
Platform library usage for standard DIir€CtFBuueiiiiiiiiiiiiiee et e 43
Platform library usage for DIr€@CtFB-XSuuiiiii ittt e e et r e e e e e e aaareeeeas 43
L€ =Y o] AT ol 1Y PR 44
IR aNd froNt PANEI ATIVETS ..ccceiieee ettt et et e e e tre e e e e tbe e e e bae e e s abaeeeesasaeeesansaaeenans 44
DireCtFB NEXUS INPUL FOULETuuiiiiciieci e bbb s s s e aaesaaesnessssssssssssnnnssnnsnnnsnnsrnnns 46
VA =T 0 Yo [1Y/ PR 47
Taa Ty e go Vi o [T oo [YT SRR PR 48
(0o =T ol o F=1 7 ={ TSR PPUR 49
NEW PIXEI FOIMALS ...uiiiiiiiie e e e e e e e e st e e e e e e e e e nabbeeeeaeeeeennnnsaeeeas 49
10 VS (=] Yo T olo] o TolT U1 o] o o] PR 49
(00] (oYU o = Tol I U] o o Lo] RSN 49
Yo g1 o el o =YY =d TSP PUPPRRE 49
D1 =Tot o2 U T) A =] OSSO PO P PP PP POPPOPPPPPPPPPPPPRE 49
(Gl =T o] a1Tel e g =] o T= L U PUPRRNS 51
IMAEE ProVIAE CRANEES ...t e e et e e e e e e e eaa e e e e e e e e e aarereeeeae e e e nnnneeeas 51
(o]0 ol a =T oY= TR 51
S TUT1 Lo IR YA (=1 o 1 U URUUUN 51
Ta XU o LN Lol T3ROS 52
L0 1 o T PRSP 52
Public AP1 changes t0 DIr€CEFB-1.4.17ouee e eeieee ettt e et e e et e e e ebte e e e snsaeeeenraeeean 53
LICCTS AT =4 T =Tt o 2 56
TeStING the IR INPUL ...eeeeeii et e e e e e e e et a e e e e e e e e e aaaaaeeeeaaeeeansssaeeaaaeans 56
Testing the front PANEIINPUL......oei e e e e e e e e e aaeeeaeean 56
Testing different blitting and drawing MoOdesuueeiiiiieciciiiiee e 57
(=T 5 (o] g 01 P10 SR E] PRSPPI 58
Y0 o] oTeT an=Te [o] F- i o] .o - SPURR 59
Frequently asked qUEStioNS (FAQ)cciicieeeeiiiiee et e eeciee e e estee e eete e e e str e e e snbeeeesstaeessnsaeeesnsaeessnnnns 60
How do | enable debugging on a per-module basis in DireCtFB?.........cccocoveeeeviiee e, 60
How do | enable back-tracing in DIr@CtFB?.......ccoeeuiiiiiiee ettt et e e e 60
How can | disable hardware acceleration and use the generic DirectFB software graphics
L0 Ta Yot ToT o ST 0 1y T T ISR 61
How can | tell what size surfaces are being created?.........ccceevcveeeieiiiee e 61
Why can’t | see memory for my surface being allocated on creation?........cccccececciiiieeeieeecccnieeen. 61
Blending multiple windows together doesn't look right - Why?cooiiiiiiiiiiii e, 61
How do | change the cursor in DIFECIFB?veiiiiiiieie et rre e e araee e 61

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012 2

DirectFB 1.4.17 Software Users Guide version 1.3

List of Tables
Table 1: SOftWAre deliVErables.........oo it e e e e e et e e e e e e e eeeareeeeeeaeeeennens 7
Table 2: Documentation deliVerables. ... i i e s e e see e s ree e saeee e 7
LI L] (R T\ LG = == £ U PUUPNE 16
TADIE 4: IMAKE TIAES «.eeeeeeieeee et et e et e e e et e e e e stba e e e e tteeeeetbaeeeenaraeeeenres 18
Table 5: Run-time environmMent Variablescooviieiiiiiieieiiiiee et 32
Table 6: Public FUNCLION APl CHANGESvviiiiiie ettt et e e e ara e e e e e e e nereas 53
Table 7: Public definition APl ChangeS.......uiiiiiiiiiieiiec sttt sttt e s e sare s sba e e sraeessbeesnaes 53
Table 8: SUPPOItEd PIatfOrmMSeeeee e e e e et e e e e e e e e e eareaeeeeeeeeanns 59
References
Reference Description Version/

Date

1 DirectFB-1.4.17_v1.5 Feature_List.pdf Al6
2 BroadcomReferencePlatformSetup.pdf STB_Platform_SWUM101-R
3 BrutusintallationGuide.pdf STB_Brutus_SWUM202-R
4 Nexus Usage Guide STB_Nexus-SWUMZ204-R
5 Nexus Architecture Guide STB_Nexus-SWUM104-R
6 Nexus Development Guide STB_Nexus-SWUM302-R
7 Nexus_MultiProcess.pdf
8 http://www.directfb.org N/A

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012 3

DirectFB 1.4.17 Software Users Guide version 1.3

Introduction

Overview

DirectFB stands for Direct Frame Buffer. "DirectFB is a thin library that provides hardware graphics
acceleration, input device handling and abstraction, integrated windowing system with support for
translucent windows and multiple display layers, on top of not only the Linux Frame buffer Device.

It is a complete hardware abstraction layer with software fullbacks for every graphics operation
that is not supported by the underlying hardware. DirectFB adds graphical power to embedded
systems and sets a new standard for graphics under Linux.” (See www.directfb.org for more
details).

This document describes how to build, install and run DirectFB 1.4.17 on a Broadcom set-top box
reference platform.

Audience

This document is aimed for individuals who have an engineering background and already know how
to build the standard Broadcom reference software for a set-top platform. This document assumes
the user is familiar with a standard Unix environment and build tools such as “make” and “gcc”.

Prerequisites

You must have the following before building and running DirectFB on a reference platform:

* A host PC or build server upon which to install the DirectFB source code and build it. It must
have the Broadcom MIPS cross-compilation tool chain installed.

* A DHCP server running on the same network as the reference platform.

* Knowledge of the “vi” UNIX editor to be able to edit text on the reference platform.

* Bash shell to execute the installation and build steps on the host / build server.

* |t may be desirable to have a USB mouse and keyboard to use with the reference platform.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 4

DirectFB 1.4.17 Software Users Guide version 1.3

Main Changes From DirectFB-1.4.15 Phase 2.1

This release officially only supports a subset of Broadcom STB chipsets, namely the 7231, 7241,
7346, 7358, 7409, 7420, 7425, 7429, 7435 and 7552. Other chipsets or platforms may work without
problems, but these will not have been rigorously tested, a warning message will be issued
informing the user that the platform may not be useable.

DirectFB-1.4.17 supports compositing to external frame buffers with Nexus surface compositor
(NSC). This is also known as “DirectFB-XS”, a terminology used by Broadcom to refer to “eXternal
Surface” composition. DirectFB and DirectFB-XS can be built to run with the Nexus drivers either in
the kernel or in user-space.

Internal to the Broadcom DirectFB release there has been a radical change in the layout of the
code. In previous releases the Broadcom specific code was overlaid on top of the vanilla DirectFB
release and the hybrid tree was then compiled and installed. With the new system all of the
Broadcom drivers are built in a separate source tree. So now when compiling the source code you
will see the generic DirectFB code compiled first, then the DirectFB-Broadcom package and finally
any extra packages such as the example applications or SaSWMan. The aim of this new system is to
eventually completely decouple the version of DirectFB from the Broadcom drivers, allowing
customers to select their own version of DirectFB. However this will take some time as the current
generation of public DirectFB releases do not contain all of the APIs required by Broadcom
customers, so we will continue to patch the DirectFB releases until all of our changes have been
rolled back into the open source project.

In order to help separate the Broadcom drivers from the vanilla DirectFB code, two new features
have been implemented internally. It is now possible to register a default version of an interface
which is tried first when a request for that type of interface is made. This allows us to register the
Nexus Still Image Decoder image provider implementation as the default interface for decoding
images by the usual range of option passing methods such as the directfbrc file. A further change is
to allow external libraries such as the Broadcom system driver to parse command line, directfbrc
and DFBARGS options passed into the application, so we can keep Broadcom specific options e.g. IR
remote control protocol inside the Broadcom driver.

Refactoring the build system has given us a chance to improve the robustness of the system and
improve the stability when switching between build types. There has also been an effort to try and
produce more useful error messages when invalid configurations are detected.

The DirectFB signal handling code has been significantly reworked to help with the shutdown of
applications via signals or CTRL-C. This should mean that applications forced to quit under
unexpected circumstances will close down in a more orderly fashion and not hold onto resources
allowing other applications to launch successfully.

1.4.17 is the first version to support capturing input events from the Nexus Input Router (NIR)
module. The Nexus Input Router is designed to work alongside the Nexus Surface Compositor and
provide a mechanism to pass input events such as keyboard, IR, keypad and mouse events to a
series of registered clients. The server API of NIR allows you to filter events and control which client
receives what type of event.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 5

DirectFB 1.4.17 Software Users Guide version 1.3

This release supports the “secure-fusion” multi-application architecture. As with the last release,
this release only supports running applications with “secure-fusion” enabled. This is to provide
maximum security for multi-application environments. Bug-fixes to secure-fusion have also been
incorporated into this release. For example, it is now possible to set the shape of the cursor
“SetCursorShape()” for a window using the create palletised surfaces APl in the context of a
DirectFB slave application without receiving a segmentation fault. It is also possible to use pre-
allocated system memory to create a DirectFB surface and update the contents of it during the
execution of a DFB slave application.

This release contains fixes for all of the image providers including the Nexus Still Image Decoder
implementation to attempt to detect broken images and stop decoding as soon as an error is
detected, preventing a range of undetected decode errors and segmentation faults.

Improvements have been made to the DirectFB Screen APIs available for the secondary display. It is
now possible to use the Encoder APl to control the secondary screen in the same manner as the
primary screen. It is also possible to disconnect display outputs from one screen and connect to the
other. This may be useful to customers who might be interested in using the component output on
platforms to provide an RGB SCART signal on the secondary display. See the new test tool

df screen_encoder for example usage.

Internal testing has shown issues with small sized pixel formats such as LUT4 under a range of
circumstances inside the generic software graphics library. These have now been fixed and a
number of improvements have been pushed into the mainline DirectFB code.

The ancillary libraries like zlib, jpeg, png, ffmpeg and freetype have been upgraded to newer more
secure versions. In addition, utilities and tests making use of the PNG library have been refactored
to ensure that they correctly use the public APl and not the deprecated private accessor functions.

Many of the unit test applications have been updated to work in an automated build environment.
New tests have also been added to exercise different areas of the core DFB code (e.g. pre-allocation
of system and video memory).

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 6

DirectFB 1.4.17 Software Users Guide version 1.3

Deliverables

This section describes what is contained in the release including software and documents.

Table 1: Software deliverables

Description Version/file Licensing

DirectFB 1.4.17 v 1.5 reference software v1.5/20121018 Broadcom SLA

Table 2: Documentation deliverables

Description Version/date
DirectFB 1.4.17 Software Users Guide (this document) 1.3
DirectFB-1.4.17 _v1.5 Feature_List.pdf Al6

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 7

DirectFB 1.4.17 Software Users Guide version 1.3

Installation

Introduction

The DirectFB-1.4.17 release contains both the open source software and Broadcom SLA specific
driver code.

All of the code inside the DirectFB-Broadcom directory, typically the DirectFB graphics, system,
input and image provider drivers come under the Broadcom SLA and are built as shared libraries.
Refer to section 3.2 for information on installing from a full release.

The standard reference software (Nexus/Magnum) source code should be available (untared) prior
to installation of the DirectFB-1.4.17 Version 1.5 reference software. If you are unsure of how to do
this, refer to the “Brutus Installation Guide” that comes as part of the reference software release.

On the host (build) machine, navigate to the root of the reference software source tree and type:
tar xzvf DirectFB-1.4.17 v1.5 20121018.tgz
This will overwrite any existing “AppLibs/opensource/directfb” dir (and subdirs).

You will now be ready to build the DirectFB source code from the
“AppLibs/opensource/directfb/build” directory.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 8

DirectFB 1.4.17 Software Users Guide version 1.3

Building
This section explains how to build standard DirectFB-1.4.17 in single, multi-application and

DirectFB-XS modes.

Step 1: Host machine tools check

Before commencing the build, ensure that the version of GNU make is 3.80 or higher on your host
build machine. You can test what version of make you are using by issuing the following command:

make —version
An earlier version of this will result in DirectFB not being built and you will need to upgrade your

make package on the host build machine.

Step 2: Environment variables

Make sure you have the reference software environment variables setup correctly. The important
ones are the following:

NEXUS_PLATFORM, BCHP_VER, LINUX
Example:

export NEXUS_PLATFORM=97425
export BCHP_VER=B2
export LINUX=/opt/brcm/linux-2.6.37-2.8

By default the Nexus and magnum drivers will be built in user-space, however you can override this
behaviour by setting the “NEXUS_MODE” envar to “proxy” and set “KERNELMODE=y”. This will
ensure the drivers are built in kernel-space with a “proxy” shim layer to translate the API calls to
Linux syscalls (ioctl’s) and back again.

Example:

export NEXUS_MODE=proxy
export KERNELMODE=y

Ed You can speed up the build process on multi-processor machines by ensuring that either
MULTI_BUILD=y or MAKE_OPTIONS=-j? is set where? specifies how many make jobs can be
run in parallel (e.g. make MAKE_OPTIONS=—j4).

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 9

DirectFB 1.4.17 Software Users Guide version 1.3

By default, DirectFB and the drivers will be built in DEBUG mode. This can have performance
penalties and it is strongly recommended that the user switch to a non-DEBUG mode after
monitoring the drivers and DirectFB for any warnings or errors. To switch to a non-DEBUG mode
(a.k.a. RELEASE mode); ensure that the environment variable “B_REFSW_DEBUG” is set to “n”.

Example:

export B_REFSW_DEBUG=n

The default is to build DirectFB and the drivers in little-endian mode. If the user wishes to run the
platform and DirectFB/drivers in BIG endian mode, then the “B_REFSW_ARCH” environment
variable needs to be specified as “mips-linux”. Little endian mode is the preferred option.

Example:
export B_REFSW_ARCH=mips-1inux

Finally, make sure your PATH environment variable is setup correctly to point to your MIPS cross-
compilation tool chain.

Example:

export PATH=/opt/toolchains/stbhgcc-4.5.3-1.3/bin/:$PATH

Step 3: Driver build check

The DirectFB build system will build the Nexus/Magnum drivers for you automatically honouring
the environment variable settings setup in Step 1 above. For special cases you can manually do it
this way:

make —C nexus/build

o

Ed You can speed up the build process on multi-processor machines by specifying the “-j” option
to make (e.g. make —j4)

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 10

DirectFB 1.4.17 Software Users Guide version 1.3

Step 4A: Building DirectFB in single-application mode

Standard DirectFB can be built in different modes of operation known as “single-application” and
“multi-application”. Single-application mode is typically used in situations where there is only a
single application accessing the DirectFB API’s. A single application is typically a single process with
or without multiple threads. If more than one application or process is required to access DirectFB
concurrently, then DirectFB will need to be built in multi-application mode, skip to step 4B.

To build DirectFB in single application mode you need to follow these steps:

cd AppLibs/opensource/directfb/build
make default tarball

Ed This will build DirectFB along with the zlib, libpng, libjpeg and freetype libraries from the
“AppLibs/opensource” directory.

The build process will first check to see whether your host build tools are at least at the correct
minimum version before proceeding. It will then build and install the Nexus/Magnum drivers with
the correct configuration based on the environment variables set in step 2.

The build process will then check to see whether the DirectFB source tree already exists in
“AppLibs/opensource/directfb/src/DirectFB-1.4.17”. If not, then the generic DirectFB-1.4.17.tar.gz
tarball from the “AppLibs/opensource/directfb/src/directfb_tarballs” directory will be untared to
create the “AppLibs/opensource/directfb/src/DirectFB-1.4.17” directory. The next step will then be
to copy the contents of the
“AppLibs/opensource/directfb/src/broadcom_files/public/DirectFB/1.4.17” directory on top of the
newly created DirectFB-1.4.17 source tree. This step is necessary, as the standard DirectFB tarball
doesn’t contain any of the Broadcom specific changes. This public directory contains only open-
source components, which have been released to DirectFB.org or are back ports from newer
versions.

Before the DirectFB source code can be built, the freetype, jpeg, zlib and png libraries need to be
built. The DirectFB source code will then be configured to auto-generate the Makefiles and finally
the DirectFB source code will be built and installed.

After the vanilla DirectFB code is built, the Broadcom specific DirectFB drivers are configured
automatically for the platform chosen based on build time options and parsing of the
Magnum/Nexus driver code. The Broadcom specific DirectFB drivers, for things that use the
Broadcom Nexus drivers such as the Still Image decoder (SID), M2MC, and platform layer are now
built from within the folder “AppLibs/opensource/directfb/src/DirectFB-Broadcom”.

The final build stage will produce a tarball that can then be copied to the target platform for
extracting and running. This tarball will be called something similar to the example below:

e.g. DirectFB-1.4.17_debug_build.97425B2.tgz

Ed In non-DEBUG (RELEASE) mode, the word “debug” will be replaced with “release”.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 11

DirectFB 1.4.17 Software Users Guide version 1.3

Step 4B: Building DirectFB in multi-application mode

Multi-application mode will allow multiple applications/processes to use the DirectFB API
concurrently. The build process is the same as for Step 4A above, except that the additional make
build option called “DIRECTFB_MULTI=y” needs to be set:

Example:

cd AppLibs/opensource/directfb/build
make DIRECTFB_MULTI=y default tarball

Multi-application mode is supported for both kernel-space (proxy mode) and user-space Nexus
drivers.

The steps in the build process are slightly different, in that the fusion IPC kernel module (linux-
fusion) will be built prior to freetype (and the other libraries) being built. The last stage of the build
process is also different in that the SaWMan window manager will be built. SaWMan allows finer
control over the placement and lifecycle of multiple applications’ windows on the screen. It
replaces the default window manager that comes with DirectFB.

E& By default when DirectFB is built for multi-application mode, the SaWMan window manager
will also be built and will override the “default” window manager. If the user would rather
use the “default” window manager instead of “SaWMan” for multi-application mode, then
the following make options can be specified:

DIRECTFB_MULTI=y BUILD_SAWMAN=N

The resulting tarball will be named slightly differently to the one produced in step 4A above. The
word “multi” will appear immediately after the “DirectFB-1.4.17"

e.g. DirectFB-1.4.17_multi_debug_build.97425B2.tgz

This tarball can be copied to the target platform in the same way as for step 4A above.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 12

DirectFB 1.4.17 Software Users Guide version 1.3

Step 4C: Building DirectFB-XS

DirectFB-XS allows non-DirectFB Nexus applications to be composited together with DirectFB
applications using the Nexus Surface Compositor (NSC).

In this mode, DirectFB will be built in single-application mode and multiple instances of DirectFB
can run concurrently with other non-DirectFB applications. The Broadcom “Trellis” framework
architecture uses this build mode of DirectFB to allow a mix of DFB and non-DFB applications to
execute simultaneously.

To distinguish between DirectFB and DirectFB-XS builds, a new environment variable has been
introduced named “DIRECTFB_NSC_SUPPORT”. When this is set to “y”, DFB will be built in
DirectFB-XS mode and all DirectFB applications will be run as Nexus clients.

Example:

cd AppLibs/opensource/directfb/build
make DIRECTFB_NSC_SUPPORT=y default tarball

To be able to run a DirectFB application, a Nexus server application must be built and launched
first. DirectFB includes a sample Nexus server called “nxsmaster”, which will be built when
DIRECTFB_NSC_SUPPORT=y and DIRECTFB_MASTER_LIB=y are set.

N.B. For Nexus kernel mode builds DIRECTFB_MASTER_LIB is automatically set. For user space
Nexus builds you will manually need to set this variable as it requires a second complete build of
Nexus, so to reduce build time and target file system size this option isn’t enabled by default.

Once successfully built, the resulting tarball will be named in the same way to the one produced in
step 4A above.

e.g. DirectFB -1.4.17_debug_build.97425B2.tgz

This tarball can be copied to the target platform in the same way as for step 4A above.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 13

DirectFB 1.4.17 Software Users Guide version 1.3

Building DirectFB tests

DirectFB test applications that reside in the DirectFB-1.4.17/tests directory are not built by default.
To enable these unit tests ensure that the make build option “BUILD_TESTS” is set to “y”.

e.g. make BUILD_TESTS=y

Building DirectFB examples

DirectFB examples are separate test/demo applications that are built by default and can be run on
the Broadcom reference platforms. To disable these additional test/demo applications from being
built, ensure that the make build option “BUILD_EXAMPLES” is set to “n”.

e.g. make BUILD_EXAMPLES=n

Building ++DFB

++DFB (a.k.a. ppDFB), is a library that C++ application can call into to make DirectFB API calls
(effectively a set of C++ bindings). ++DFB is a more advanced version of DFB++, and is incompatible
in the way applications can call methods/functions.

To build ++DFB-1.4.2, ensure that the make build option “BUILD_PPDFB” is set to “y”.

e.g- make BUILD_PPDFB=y

Ed ++DFB requires the standard C++ libraries be present on the target platform.

Building Insignia test harness

The Insignia test harness is only available to certain customers who have signed an SLA with
YouView. This test harness will check that the Broadcom DirectFB graphics driver matches the
software fall back implementation for over 600 test cases. If the Insignia tarball is present, then
this package can be built by setting the make build option “BUILD_INSIGNIA” to “y”.

e.g. make BUILD_INSIGNIA=y

E4 Itis advisable to also set DIRECTFB_HW_DITHERING=n as running without this option will
cause failures in certain 16bit pixel format blits due to added rounding differences.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 14

DirectFB 1.4.17 Software Users Guide version 1.3

Building Tacho test harness

The Tacho test harness is only available to certain customers who have signed an SLA with YouView.
This test harness will check the graphics performance of the Broadcom DirectFB graphics driver. If
the Tacho tarball is present, then this package can be built by setting the make build option
“BUILD_TACHO” to “y”.

e.g. make BUILD_TACHO=y

Building external applications

Third party applications and/or external applications/tests can be built with the correct DirectFB
compiler flags by using the “directfb-config” utility. The example below shows how a test
application called “my_test.c” can be built.

mipsel-linux-gcc ~./DirectFB-1.4.17/directfb-config —cflags —libs™ my_test.c -o
my_test

E4d If the application you want to compile includes any Nexus headers and makes any Nexus calls,
then the following additional flags can be passed to “directfb-config” in order for the
application to be built more easily:

--extra-cflags --extra-libs

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 15

DirectFB 1.4.17

Software Users Guide version 1.3

Additional make targets

The DirectFB build system does allow for partial steps or targets to be chosen. These build targets
are listed below along with a description:

Table 3: Make targets

Make Target Description

help List the DirectFB make targets that can be called along with options.

default This is the default make target and will attempt to install all DirectFB
software modules, if they haven’t already been installed. If a module
hasn’t been compiled, then it will be compiled first.

release This will create a full release of the DirectFB software including both open
source and Broadcom SLA specific code. The result is a dated tarball.

all This will force every DirectFB software module to be reconfigured, rebuilt
and installed.

tarball This will create a tarball of the target output directory that can then be
copied over to the target platform for unpacking and running.

install This option is the same as the default target option and will only install
software modules that need installing.

compile This will attempt to compile all DirectFB software modules that need
compiling. If a module hasn’t already been configured, then it will be
configured first.

config This will attempt to configure all DirectFB software modules that need
configuring. If a module hasn’t already been unpacked, then it will be
unpacked first.

uninstall This will cause all installed intermediate files to be uninstalled.

uninstall-target

This will remove all target output directory installed files.

clean

Remove all generated object files, dependencies, binaries and temporary
object directories.

distclean

Remove everything including the generated source code. The user will be
prompted first to remove any source code. This target should always be
called prior to installing a new release of DirectFB.

mrproper

Remove everything including generated source code. No user prompts
will be displayed. This target should always be called prior to installing a
new release of DirectFB.

check-tools

Do a quick check to make sure you have up-to-date tools to build
DirectFB.

check-autogen-
tools

Do a quick check to make sure you have up-to-date tools to auto
generate the autoconf *.in files needed to build DirectFB.

Revised: October 18, 2012

Broadcom Corporation Proprietary and Confidential
16

DirectFB 1.4.17

Software Users Guide version 1.3

Make Target

Description

directfb-defines

This will update the graphics and system defines files in the DirectFB-
1.4.17 source tree.

xxx-all Where xxx can be “”, “directfb”, “directfb-brcm”, “directfb-examples”,
“sawman”, “fusion”, “ppdfb”, “divine”, “insignia”, “tacho”, “ffmpeg”,
“freetype”, “jpeg”, “png” and “zlib”. This will re-build the chosen target
software module including re-configuration and re-compilation if
necessary.

XXX-source Like “xxx-all” above, but the source code for the chosen module “xxx” will
be created if not already present.

xxx-config Like “xxx-source” above, but the configuration step will be called.

xxx-compile Like “xxx-source” above, but the compilation step will be called.

xxx-install Like “xxx-source” above, but the installation step will be called.

xxx-uninstall Like “xxx-source” above, but the uninstallation step will be called.

xxx-clean Only clean the required software module specified by “xxx”.

xxx-distclean

Perform a complete clean of the chosen software module specified by
“xxx” with user prompt.

XXX-mrproper

Perform a complete clean of the chosen software module specified by

yyy-autogen

”n u

Where “yyy” can be “directfb”, “directfb-examples”, “sawman”,
“FFmpeg” and “ppdfb”. This will regenerate the “Makefile.in” and
“configure” scripts from the *.am files. This option is only useful for
developers who want to change the way the chosen software module is
built (e.g. build new test application).

Revised: October 18, 2012

Broadcom Corporation Proprietary and Confidential
17

DirectFB 1.4.17 Software Users Guide version 1.3

Additional make flags

The following table lists the complete set of flags that can be passed to the DirectFB build system to
modify the default build behaviour. The flags are normally passed on the “make” command line,
but can also be set as environment variables.

e.g. make DIRECTFB_MULTI=y
e.g. export DIRECTFB_MULTI=y

Table 4: Make flags

Make Target Description

DIRECTFB_VERSION The version of DirectFB to be compiled can be
overridden (e.g. DIRECTFB_VERSION=1.4.17)

DIRECTFB_MULTI The default is to build DirectFB in single application
mode. Setting this flag to “y” will build DirectFB in
multi-application mode.

DIRECTFB_NSC_SUPPORT The default is to build DirectFB in “non-XS” mode.
Setting this flag to “y” will build in DirectFB-XS mode. .

DIRECTFB_MASTER_LIB The default is to build DirectFB with master Nexus
libraries and to build DirectFB-XS with only client
Nexus libraries. Setting this flag to “y” when
“DIRECTFB_NSC_SUPPORT=y” is also set, will ensure
that the DFB Nexus master server application,
nxsmaster, is also built.

DIRECTFB_CLIENT_LIB The default is to build single-application DirectFB with
only master Nexus libraries and DirectFB-XS with client
only Nexus libraries. This flag is not normally used by
the end user.

DIRECTFB_SHARED The default is to build the zlib, freetype, png and jpeg
utility libraries as shared libraries that can then be
dynamically linked with DirectFB at run time. Setting
this flag to “n” will instead build these libraries as
static (.a) and DirectFB will statically link with them at
compile time. Setting this flag to “n” generally
increases code size, but can be useful if applications
use different versions of these utility libraries.

DIRECTFB_PREFIX The default target prefix is “/usr/local” but this can be
overridden using this flag (e.g. DIRECTFB_PREFIX=/usr).
This specifies the path to the DirectFB installation on
the target platform.

DIRECTFB_IR_PROTOCOL The default IR protocol can be overridden using this
flag. The IR protocol should be the name of the NEXUS

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 18

DirectFB 1.4.17

Software Users Guide version 1.3

Make Target

Description

IR protocol (e.g. “Generic”, “RemoteA”, and “CirNec”).

DIRECTFB_IR_INPUT

The default is to enable the DirectFB IR input if the
platform supports IR input. However, the user can
specify “n” to disable it.

DIRECTFB_KEY_INPUT

The default is to disable the DirectFB front-panel

keypad input. However, the user can specify “y” to
enable it.

DIRECTFB_SID

The default is to build the DirectFB still image decoder
(SID) image provider module/lib, if the platform
supports a SID hardware decoder. However, the user

can specify “n” to prevent this module from ever being
built.

DIRECTFB_SW_DITHERING

Enable software dithering (currently only supported
with RGB16 and ARGB4444 formats). When set to “y”
advanced software dithering for RGB16 and ARGB4444
formats will be enabled. The downside is that this will
increase the size of the data section by at least 64KB.
Default is “n”.

DIRECTFB_HW_DITHERING

Enable hardware dithering support for RGB16 and
ARGBA4444 pixel formats. The default is “y”. It is best
to set this to “n” when running the Insignia test suite
as some of the tests will fail due to the dithering.

DIRECTFB_SW_SMOOTH_SCALING

a..n

Enable software smooth scaling. When set to “y
software smooth scaling will be enabled and the size of
the text section will increase by at least 100K bytes.

DIRECTFB_GFX_PACKET_BUFFER

The default is to enable the packet buffer interface in
the Broadcom DirectFB graphics driver. Setting this to
“n” will cause the legacy graphics driver to be used
that will have lower graphics performance.

DIRECTFB_GFX_TRAPEZOID_SUPPORT

The default is to enable drawing of trapezoids in the
graphics driver if the packet buffer interface is enabled
too. Setting this option to “n” will result in trapezoids
being drawn using only software.

DIRECTFB_GFX_SOFT_MATRIX_SUPPORT

The default is to enable support for the SetMatrix()
function in our graphics driver using the PX3D
hardware to perform rotation and shearing. If the
PX3D hardware is not present or this option is set to
“n”, then a much limited feature set for SetMatrix()
will be available.

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012

19

DirectFB 1.4.17

Software Users Guide version 1.3

GL_SUPPORT

This flag controls whether the nexus/magnum drivers
and DirectFB are built with support for the PX3D 3D
graphics core. By default the drivers and DirectFB are
not built with support for 3D graphics. To enable
support for “DrawlLine()”, “TextureTriangles()”,
“FillTriangle()” and “FillTriangles()”set this flag to “y”
when building nexus and also when building DirectFB.
This flag does not have any effect for chips that don’t
have the PX3D core.

DIRECTFB_GLES_SUPPORT

The default is not to build DirectFB with OpenGL ES 1.0
and EGL support. However, setting both this flag and
the “GL_SUPPORT” flag to “y” will build DirectFB with
3D OpenGL ES 1.0 support. This support is only
available on devices that have a PX3D graphics core.
The nexus/magnum drivers must have also been built

with both these flags set to “y” in order to have
OpenGL ES 1.0 support.

BUILD_TESTS

The default is not to build the DirectFB unit test
applications that are located in the “tests” directory.
Setting this flag to “y” will instead build and install the
additional DirectFB tests.

BUILD_EXAMPLES

The default is to build the additional DirectFB
examples. Setting this flag to “n” will disable the
building and installing of the additional DirectFB
examples.

BUILD_SAWMAN

The default is to build SaWMan only when
“DIRECTFB_MULTI=y”. Setting this flag to “n” will
disable building SaWMan and will ensure that the
default window manager of DirectFB is used. This
option is only meaningful when building in multi-
application mode.

BUILD_PPDFB

The default is not to build the ++DFB library. Setting
this flag to “y” will build and install the library.

BUILD_FUSION

The default is to build the “linux-fusion” kernel module
only when DirectFB is built in multi-application mode.
Setting this flag to “n” will prevent this module from
being built and installed and if used in conjunction
with “DIRECTFB_MULTI=y”, the experimental multi-
application mode of DirectFB will be built instead.

BUILD_VOODOO

The default is not to build the voodoo library that is
part of DirectFB. Setting this flag to ‘y’ will build and
install the library.

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012

20

DirectFB 1.4.17

Software Users Guide version 1.3

BUILD_FFMPEG

The default is “n”, to build the FFmpeg library that is
used to decode MPEG-2 and H.264 I/IDR pictures set it
to “y”. If you do not need to display MPEG-2/H.264
I/IDR still pictures, then you may leave it unset.

BUILD_INSIGNIA

The default is not to build the Insignia library. Setting
this flag to “y” will build and install the library if the
source tarball is present.

BUILD_TACHO

The default is not to build the Tacho library. Setting
this flag to “y” will build and install the library if the
source tarball is present.

NEXUS_MODE

The default is to build NEXUS for user-space. Setting
this option to “proxy” will result in the NEXUS drivers
being compiled for kernel-space.

B_REFSW_ARCH

The default is to build DirectFB and the associated
libraries in little endian mode. Setting this flag to
“mips-linux” will result in Nexus, DirectFB and its

libraries being built in big endian mode instead. .

B_REFSW_DEBUG

The default is to build DirectFB in debugging mode.
However, setting this flag to “n” will build DirectFB in
release mode and no debugging information will be
available. Setting this option to “n” will also improve
graphics performance.

B_REFSW_VERBOSE

The default is to build DirectFB with minimal
information. Setting this flag to “y” will increase the
amount of information available during the building
stages.

TRACE

The default is to build DirectFB without any tracing
information. Setting this flag to “y” will allow tracing
information to be enabled.

DIRECTFB_EXAMPLES_VERSION

The default is to build the DirectFB examples 1.6.0pre
software package. If a different version is available,
then seeing this flag will result in that version being
built instead (e.g.
DIRECTFB_EXAMPLES_VERSION=1.2.1). The
alternative software tarball should be placed in the
“directfb_tarballs” directory before building the
software.

FUSION_VERSION

The default is to build linux-fusion version 8.9.10. If an
alternative tarball version is available to be built, it
should first be placed in the “directfb_tarballs”
directory and this flag should be set accordingly (e.g.
FUSION_VERSION=8.1.1).

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012

21

DirectFB 1.4.17

Software Users Guide version 1.3

SAWMAN_VERSION

The default is to build SaWMan version 1.5.4, but if a
different version of SaWMan is available, then setting
this flag will result in that version being built instead
(e.g. SAWMAN_VERSION=1.4.15). The alternative
software tarball should be placed in the
“directfb_tarballs” directory before building the
software.

FFMPEG_VERSION

The default is to build FFmpeg version 0.9.1. Setting
this flag will allow an alternative version of FFmpeg to
be built (e.g. FFMPEG_VERSION=1.0.0). The
alternative software tarball should be placed in the
“directfb_tarballs” directory before building the
software.

PPDFB_VERSION

The default is to build ++DFB version 1.4.2. However,
this behaviour can be overridden by specifying an
alternative version (e.g. PPDFB_VERSION=1.4.0). The
alternative software tarball should be placed in the
“directfb_tarballs” directory before building the
software.

INSIGNIA_VERSION

The default is to build Insignia version 0.1.2. However,
this behaviour can be overridden by specifying an
alternative version (e.g. INSIGNIA_VERSION=0.1.3).
The alternative software tarball should be placed in
the “directfb_tarballs” directory before building the
software.

TACHO_VERSION

The default is to build Insignia version 0.1.2. However,
this behaviour can be overridden by specifying an
alternative version (e.g. TACHO_VERSION=0.1.3). The
alternative software tarball should be placed in the
“directfb_tarballs” directory before building the
software.

DFB_FREETYPE_VERSION

The default is to build Freetype version 2.4.9 from
“AppLibs/opensource/freetype”. This behaviour can
be overridden by setting this flag appropriately. For
example, to build a different Freetype library version
you can set “DFB_FREETYPE_VERSION=2.4.9".

DFB_JPEG_VERSION

The default is to build JPEG version “8d” from
“AppLibs/opensource/jpeg”. This behaviour can be
overridden by setting this flag appropriately. For
example, to build a different JPEG library you can set
“DFB_JPEG_VERSION=8d".

DFB_PNG_VERSION

The default is to build PNG version 1.5.10 from
“AppLibs/opensource/libpng”. This behaviour can be

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012

22

DirectFB 1.4.17

Software Users Guide version 1.3

overridden by setting this flag appropriately. For
example, to build a different PNG library you can set
“DFB_PNG_VERSION=1.5.10".

DFB_ZLIB_VERSION

The default is to build zlib version 1.2.6 from
“AppLibs/opensource/zlib”. This behaviour can be
overridden by setting this flag appropriately. For
example, to build a different zlib library you can set
“DFB_ZLIB_VERSION=1.2.6".

APPLIBS_INSTALL_PREFIX

|Il

The default is to install all files relative to “/usr/loca
on the target platform. This option can be overridden
to place the target files in a different directory
structure.

APPLIBS_TARGET_TOP

This specifies the final output directory on the host
build machine in which the DirectFB binaries and
libraries are to be installed prior to being packed ready
for transfer to the target platform. The default is
“AppLibs/target”, but this can be overridden

APPLIBS_COMMON_INC

This specifies whether the AppLibs or DirectFB build
process will be used to compile the zlib, libpng, libjpeg
and freetype ancillary libraries. The default is to “n”,
to use the DirectFB build process.

OPENSOURCE_TOP

This specifies the top-level directory where all open-
source software components/libraries reside on the
host machine. By default this is
“AppLibs/opensource”.

NEXUS_TOP

This specifies the top-level directory where the Nexus
reference software resides.

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012

23

DirectFB 1.4.17 Software Users Guide version 1.3

Running DirectFB on the target platform

This section explains how to run DirectFB and DirectFB-XS on different target platforms.

Standard DirectFB single application mode

Once you have generated the tarball in Step 4A you need to copy it to the target platform. The
most straightforward method is to run an NFS server on your build machine and mount the
extracted file system onto the reference board.

mkdir —p /export/nfs/97425/
tar —zxf DirectFB-1.4.17_debug_build.97425B2.tgz —C /export/nfs/97425/

Ed You will need to make sure that the NFS server is running on your build machine and that the
directory you have extracted the root file system into is exported in the /etc/exports
configuration file.

Once the NFS server is configured you will need to mount the file system on the reference platform
and create a link to place the files in the correct location.

mount 192.168.0.1:/export/nfs/97425/usr /mnt/nfs;
In —s /mnt/nfs /usr

With the file system correctly mounted, you are now ready to run the installation script.

cd Zusr/local/bin/directfb/1.4
./rundfb.sh install

You are now ready to run any DirectFB application from this directory. For example, to run the
df_andi (penguins) test, enter the following command:

-/rundfb.sh df _andi

You can also specify the output resolution of the connected display (the default is 720p on most
chipsets). For example, to run with a 1080i output resolution, you can enter the following
command:

-/rundfb.sh df_andi -—dfb:res=1080i

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 24

DirectFB 1.4.17 Software Users Guide version 1.3

DirectFB multi-application mode

With DirectFB running in multi-application mode, more than one application can access the
DirectFB API’s at the same time from different processes. The same steps can be taken as for single-
application mode when it comes to running the first application. However, for any subsequent
application, the “rundfb.sh” script needs to be used with the “join” option. An example of running
both df _andi and df_window in multi-application mode using different processes is given below:

cd Zusr/local/bin/directfb/1.4

-/rundfb._sh install

-/rundfb.sh df_window &

-/rundfb.sh join df_andi --dfb:force-windowed,mode=640x480

You should now be able to see the DirectFB Penguins application on top of df_window. If you have
a USB keyboard and mouse connected to the platform, you should be able to move the windows
created by df _window around the screen. Pressing Q or ESC on the USB keyboard will quit the
application(s). Pressing EXIT on an infra-red handset will also quit the application(s).

You can also specify the size of the graphics surface/layer independent of the output resolution of
the display. For example, if you would like to have a 640x480 graphics layer with a 1280x720p
output resolution, you can use the “mode” DirectFB option. An example of this is given below:

-/rundfb.sh join df_andi —dfb:force-windowed,mode=640x480

In some multi-application usage modes, the graphics will be stretched horizontally and vertically to
fill the display window. If you would prefer not to have the graphics stretched to fill the display
window, then the “scaled” option can be used in conjunction with “force-windowed”. An example
of this is given below:

-/rundfb.sh join df_andi —dfb:force-windowed,mode=640x480,scaled=640x480

Ed The first DirectFB application that runs is known as the “master” and subsequent DirectFB
applications are known as “slaves”. The “master” application is normally a module that
should not under normal circumstances be terminated. Internally within DirectFB, it will
manage the Nexus display settings and will be responsible for creating and destroying all
Nexus surfaces and memory. If this application is terminated before any of the client
applications are closed, then the system may be left in an unrecoverable state and may
require a reboot.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 25

DirectFB 1.4.17 Software Users Guide version 1.3

DirectFB-XS (Nexus Surface Compositor)

Before you can run any DirectFB applications in this mode, you need to launch the Nexus server
application. If you have built DirectFB with the “DIRECTFB_NSC_SUPPORT=y” option (and
DIRECTFB_MASTER_LIB=y for userspace Nexus drivers, then the “nxsmaster” application (like
“dfbmaster”) will have also been built.

cd Zusr/local/bin/directfb/1.4
./rundfb.sh install
./rundfb.sh nxsmaster &

You are now ready to run any DirectFB application from this directory as a Nexus slave. You will
need to specify the “join” command for all Nexus/DFB slave applications to ensure that the Nexus
drivers are not reloaded.

For example, to run the df_andi (Penguins) test application as full screen, enter the following
command:

./rundfb.sh join df_andi

The Nexus server application (“nxsmaster” in this case) is the process that composites the different
applications framebuffers together using the Nexus Surface Compositor (NSC). It is responsible for
the size and position of the client applications’ framebuffer. There are some presets in the
“nxsmaster” application that allow multiple applications to be positioned in different quadrants of
the screen. You can specify the client/quadrant by using the “dfb_clientid” envar before you launch
an application. For example, to launch df _andi in the top left-hand corner of the screen, enter the
following command:

dfb_clientid=1 ./rundfb.sh join df_andi

To launch another instance of df_andi in the bottom right-hand corner of the screen, you may
enter:

export sw_picture_decode=1 (the current Nexus SID driver doesn’t support multiple
instances)
dfb_clientid=4 ./rundfb.sh join df_andi

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 26

DirectFB 1.4.17 Software Users Guide version 1.3

Running texture mapped graphics applications

DirectFB can be built with hardware acceleration support for “TextureTriangles()”, “FillTriangle()”
and “FillTriangles()” graphics functions. This hardware acceleration support is only available for
Broadcom devices that have the PX3D 3D graphics core (e.g. BCM7420). Both Nexus and DirectFB
must be built with the “GL_SUPPORT=y” environment flag set.

To test “TextureTriangles()”, the user can run the “df_texture” unit test.

e.g. ./rundfb.sh df_texture

It is possible to run “df _texture” or perform matrix transformations on primitives and surfaces
without 3D capable graphics hardware. This is achieved by using software fall back graphics
operations which are enabled by default on non PX3D systems.

Running OpenGL ES 1.0 graphics applications

DirectFB can be built with support for OpenGL ES 1.0 and EGL for chips that have the PX3D 3D
graphics core (e.g. BCM7420). Both Nexus and DirectFB must be built with the following two
environment flags set:

“GL_SUPPORT=y”
“DIRECTFB_GLES_SUPPORT=y”

To test the OpenGL ES 1.0 and EGL support within DirectFB, you may run any of the following test
applications (build with BUILD_TOOLS=y):

1. dfbtest_egl only
2. dfbtest_egl pixmap (use mouse to XYZ rotation)
3. dfbtest_gl (use mouse to change XYZ rotation)

e.g. ./rundfb.sh dfbtest_gl

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 27

DirectFB 1.4.17 Software Users Guide version 1.3

Running OpenGL ES 2.0 graphics applications

The DirectFB release does not contain any OpenGL ES 2.0 applications, but instead the
“rockford/applications/opengles_v3d/v3d/directfb” directory contains a few example applications.
These applications must be built after DirectFB has been built and they will only run on chips that
have a VC-4 3D graphics core (e.g. BCM7425) and won’t run on chips that have the PX3D core.

To build any of these OpenGL ES 2.0 applications, simply type “make” in the appropriate application
directory (ensuring that “V3D_SUPPORT=y” envar is set first):

e.g. make —C rockford/applications/khronos/v3d/directfb/cube

E&d If you have built DirectFB in multi-application mode, then you need to ensure you pass
“DIRECTFB_MULTI=y” on the make command line:

make DIRECTFB_MULTI=y —C rockford/applications/khronos/v3d/directfb/cube
or

make DIRECTFB_MULTI=y —C
rockford/applications/khronos/v3d/directfb/earth_es2

After this step, you can type “make tarball” in the DirectFB build directory to create a tarball that
will contain the application(s) and OpenGL driver and platform code.

This release now supports running multiple OpenGL ES 2.0 applications simultaneously. For
example, you can run df _window, earth_es2 and cube together when DFB is built in multi-
application mode as follows:

Example:

./rundfb.sh df_window &
./rundfb.sh earth_es2 --dfb:force-windowed,mode=640x480 &
./rundfb.sh cube --dfb:force-windowed,mode=320x240

For newer platforms which support Nexus Surface Compositor (NSC) you may want to look at this
approach rather than using DirectFB to display OpenGL applications. This approach offers more
flexibility and removes any dependency of the OpenGL application on DirectFB, reducing code size
and increasing performance. This also means you can use DirectFB-XS which uses DirectFB in single
application mode which offers better performance and reduced CPU usage than multi-application
mode.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 28

DirectFB 1.4.17 Software Users Guide version 1.3

Running SaWMan (multi-application mode)

SaWMan is the Shared application and Window Manager that overrides the “default” window
manager of DirectFB. It can act as an application lifecycle manager, deciding what
application/processes can be spawned or terminated and which application(s) receive input events.
Many multi-application environments use SaWMan to help fulfil their requirements for displaying
and managing multiple applications simultaneously.

If DirectFB has been built in multi-application mode, then the SaWMan becomes the default
window manager. There are two specific applications that can be used to test SaWMan
functionality. They are “testman” and “testrun”. “testman” is the main application manager and is
used to register what applications can be spawned or terminated. It also has full control over the
layout of multiple applications on the display. “testrun” on the other-hand, is used to signal what
pre-registered application can be run. “testrun” can be called from different processes multiple
times, thus helping to simulate a real-world multi-process / multi-application environment. To test
SaWMan follow the steps below:

Running with kernel-space (proxy mode) drivers

cd Zusr/local/bin/sawman/1.5
./runsaw.sh testman &

-/runsaw.sh join testrun Penguins
./runsaw.sh join testrun Penguins2
./runsaw.sh join testrun Penguins3
-/runsaw.sh join testrun Penguins4

Running with user-mode drivers

cd Zusr/local/bin/sawman/1.5

./runsaw.sh testman &

cd /Zusr/local/bin/directfb/1.4

-/rundfb.sh join df_andi --dfb:force-windowed &
-/rundfb.sh join df_andi --dfb:force-windowed &
-/rundfb.sh join df_andi --dfb:force-windowed &
./rundfb.sh join df_andi --dfb:force-windowed &

On the screen you should see 4 windows each with their own df _andi (Penguins) moving around.
You can move the mouse over any of the windows and press <Q> to quit the application. Each of
the applications is running in a separate process.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 29

DirectFB 1.4.17 Software Users Guide version 1.3

Running DirectFB examples

DirectFB examples are additional example applications and tests that are built when the
“BUILD_EXAMPLES=y” option is set. To test any of these additional example applications, follow
the example steps below:

cd Zusr/local/bin/directfb/1.4
-/rundfb.sh df _matrix

Running ++DFB

++DFB requires that the C++ standard libraries are installed on the target platform. These libraries
are usually located in the “/lib” directory and are called “libstdc++.so

If you have the C++ libraries installed you should be able to run any of the ++DFB test applications.
For example, you can run the “dfbshow” test application as follows:

cd Zusr/local/bin/++dfb/1.4
-/runppd.sh dfbshow Zusr/local/share/directFB-1.4.17/images/biglogo.png

Running audio/video tests

When building for multi-application DirectFB (non-DirectFB-XS), there are three audio/video
playback examples tests:

1. playback_dfb
2. decode_server_dfb

3. decode_client_dfb

playback_dfb

This is a DirectFB master and Nexus server application that is built when the Nexus server library
(libnexus.so) is present.

This application can read in an MPEG-2 transport stream file and decode a particular packetized
elementary stream within it specified by the audio and video PIDs. The audio and video codecs can
also be specified on the command line.

It is possible to start this application running and then run any further DirectFB applications as
slaves.

Example:

1. Run the playback example as a master DirectFB application (Nexus server):

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 30

DirectFB 1.4.17 Software Users Guide version 1.3

-/rundfb.sh playback dfb —Ffile <path to MPEG-2TS file> --vpid <video PID in
decimal> --apid <audio PID in decimal> --vcodec <video codec in decimal> --
acodec <audio codec in decimal>.

2. Run df_andi as a DirectFB slave application (Nexus client):

-/rundfb.sh join df_andi —dfb:force-windowed,mode=640x480

Ed You can find out what the audio and video codecs arguments are available by using the “--
help” argument to “playback_dfb”.

e.g. -/rundfb.sh playback dfb --help

decode_server_dfb

This is a Nexus server / DirectFB master application that is only built when the Nexus server library
(libnexus.so) is present and DirectFB is compiled in multi-application mode. This application
initializes Nexus, opens up server-side Nexus modules/interfaces (e.g. display, simple audio/video
decoders) and starts the Nexus server. This application must be the first Nexus/DirectFB
application in the system to be executed.

decode_client_dfb

This is a Nexus client application that is used to playback audio/video from an MPEG-2 TS file. It
connects to the already running “decode_server_dfb” application on the target platform. It accepts
the same command line arguments as for the “playback_dfb” application. The advantage this
application has over “playback_dfb” is that it can be run as a Nexus client (slave) application. For
example, to be able to playback audio/video in a Nexus client application as well as running a
DirectFB slave application (e.g. df_andi), you can follow the steps below:

From the main console:
1. ./rundfb.sh decode_server_dfb

From a new virtual console (e.g. telnet session):

2. ./rundfb.sh join decode_client_dfb —file <path to MPEG-2 TS file> --vpid
<video PID in decimal> --apid <audio PID in decimal> --vcodec <video codec
in decimal> --acodec <audio codec in decimal>.

From a new virtual console (e.g. telnet session):

3. ./rundfb.sh join df_andi —dfb:force-windowed,mode=640x480

Ed You can find out what the audio and video codecs are available by using the “--help”
argument to “decode_client_dfb”.

e.g. -/rundfb.sh join decode_client_dfb --help

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 31

DirectFB 1.4.17

Run-time enviro

Software Users Guide version 1.3

nment variables

The table below lists the environment variables that affect the run-time behaviour of DirectFB.
These environment variables can be set using the “export” command.

Table 5: Run-time environment variables

Runtime Option

Description

dfb_slave

This determines whether the DirectFB application should “join” Nexus
(set to “y”) or initialize Nexus (set to “n”). This option can be set to “y”
if another non-DirectFB application is the primary application in the
system and has already initialized Nexus with
“NEXUS_Platform_Init()”. After initializing or joining Nexus, DirectFB
can decide whether to open the display, graphics and picture decoder
Nexus handles itself or use the handles provided to it in the

DFB_Platform_lInit() call.

dfb_clientid

Used by client applications when running in DirectFB-XS mode to
determine which client is attaching to the server.

sw_picture_decode

This envar only affects platforms that have a still image decoder (SID).
Normally, JPEG, GIF and PNG images are rendered using the SID.
However, setting this envar to any value will result in the software
DirectFB picture decoding functions being used instead.

hdsd_mode

Set the HD/SD display mode. If this envar is set to “0”, then the
composite/CVBS output is connected to the primary display 0 output.
In this configuration, only SD display output resolutions are supported
on both primary and secondary display outputs (e.g. “res=576i"). If
this envar is not set or is a value other than “0”, then the
composite/CVBS output is connected to the secondary display 1
output and the primary display output can be configured to be either
HD or SD. (Not available in DirectFB-XS)

DFBARGS

This is the standard DirectFB arguments envar that can be used to
specify the DirectFB run-time options (e.g. export
DFBARGS="res=1080i").

Revised: October 18, 2012

Broadcom Corporation Proprietary and Confidential

32

DirectFB 1.4.17 Software Users Guide version 1.3

Additional information

Build system information

The build system for DirectFB and its associated software components all reside in a top-level
Makefile, include file (directfb_common.inc) and package includes in “packages/” in the
“AppLibs/opensource/directfb/build” directory. The make process is broken down into different
steps, each of which depends on a previous step. The following diagram shows how the user can
enter any step directly, but the make system knows whether the previous step(s) have already been
completed (dependencies).

Abort with error

make check-tools
make xxx-source

make xxx-config

make xxx-compile

Compile software

S/W
Compiled?

make xxx-install S/W installed?

Y
Install software

v
Make complete

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 33

DirectFB 1.4.17 Software Users Guide version 1.3

It is worth noting that the build system does not track modified source code files between the
stages in green. For example, if the user built and installed DirectFB by typing “make” and then
modified a DirectFB-1.4.17 source code file, the build system does NOT know that a source code file
was modified if the user were to type “make” again. Instead, the user can type “make directfb-
compile” and this will rebuild only the source files needed within DirectFB. The user can then type
“make” and the build system is intelligent enough to know that the directfb installation phase
needs to be completed next.

This approach saves time during the build process when making lots of source code modifications.
If the makefile had to call each software modules “compile” stage, then it would also force an
installation which would all consume valuable time. The recommended approach is to make source
code modifications, type “make xxx-compile” (where xxx is the software module like “directfb”) and
then type “make” for the build system to complete any further necessary steps (e.g. installation).
The same can be said if the user wants to reconfigure DirectFB or a software module. The user
should type “make xxx-config” first to re-configure the software module, and then type “make”.
Usually this will involve the source code being re-compiled and re-installed.

Multi-application support with DirectFB

Standard DirectFB can be built in what is known as “multi-application” mode. This mode allows
multiple DirectFB and non-DirectFB applications to run in separate processes simultaneously.
DirectFB multi-process support is available when the Nexus drivers are built for “proxy” mode
(kernel mode) and when the drivers are built for user-space.

The first DirectFB or non-DirectFB application that is executed on the target system is known as the
“master” application and this application always need to be running and must be the last
application terminated on the target system. If this first application is a DirectFB application, then it
will be responsible for receiving remote procedure calls (RPC) from client/slave DirectFB
applications. This “master” DirectFB application is responsible for creating and destroying Nexus
surfaces, allocating and freeing Nexus memory, graphics rendering using the underlying graphics
hardware and handling Nexus display settings (e.g. setting the frame-buffer). When a DirectFB
slave application (Nexus client) tries to create a surface, set the graphics frame-buffer or use the
DirectFB graphics operation API’s (e.g. Blit(), the core DirectFB code will use “secure-fusion” to issue
a RPC to the “master” DirectFB application to service the request. By default, “secure-fusion” is
enabled so many of the DirectFB API’s are actually executed in a dispatch thread in the context of
the master DirectFB process.

If the “master” application is terminated either intentionally or unintentionally, then the system will
be in an unstable state as client/slave applications won’t be able to have their RPC requests
serviced.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 34

DirectFB 1.4.17 Software Users Guide version 1.3

Running non-DirectFB and DirectFB applications

There are some situations where the system may have non-DirectFB applications and DirectFB
applications running concurrently. In this scenario, the non-DirectFB application may have already
initialized Nexus and opened Nexus modules that the DirectFB application(s) rely on (e.g. Nexus
display, graphics2d, graphics3d, picture decoder).

(For newer systems you may want to consider using Nexus Surface Compositor to handle this
situation).

To allow for this usage scenario, there is a “dfb_platform.h” file that contains a light-weight API that
non-DirectFB and DirectFB applications can use.

Running a non-DirectFB master application
There are two ways in which a non-DirectFB “master” application can initialize Nexus:

1. Can continue to use the existing “NEXUS_Platform_GetDefaultSettings()” and
“NEXUS_Platform_Init()” API. It will also need to start the Nexus server using the
“NEXUS_Platform_GetDefaultStartServerSettings()” and “NEXUS_Platform_StartServer()”
APIs (see “decode_server_dfb” example).

It can then inform the Broadcom DirectFB platform layer code that Nexus has already been
initialized by making a call to
“DFB_Platform_GetDefaultSettings(DFB_PlatformClientType_eMasterNexuslnitialized,
pSettings)” followed by a call to “DFB_Platform_Init(pSettings)”. The client type in the call
to “DFB_Platform_GetDefaultSettings()” specifies that this is a master application and that
Nexus has already been initialized.

By default, the “DFB_Platform_Init()” function will automatically attempt to open up the
Nexus display, graphics2d, graphics3d and picture decoder modules and will place these
module handles in System V shared memory to allow other processes to access them. If the
“master” non-DirectFB application has already opened up the Nexus modules, then the
Nexus handles can be passed into the “DFB_Platform_Init()” function and the DFB platform
code will know not to attempt to open the Nexus modules again.

The “DFB_Platform_Init()” function will also try to automatically connect up certain outputs
to the display(s). Normally, the HDMI/component outputs will automatically be connected
to the primary HD display and the composite output will be connected to the secondary SD
display. If the non-DirectFB “master” application wants to override this default behaviour,
then it can indicate what outputs should be connected to what display by setting
appropriate flags in the “DFB_PlatformSettings” structure.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 35

DirectFB 1.4.17 Software Users Guide version 1.3

Can replace the calls to “NEXUS_Platform_GetDefaultSettings()”, “NEXUS_Platform_Init()”,
“NEXUS_Platform_GetDefaultStartServerSettings()” and “NEXUS_Platform_StartServer()”
with
“DFB_Platform_GetDefaultSettings(DFB_PlatformClientType_eMasterNexusUninitialized,
pSettings)” and “DFB_Platform_Init(pSettings)”. The application can still pass in certain
Nexus platform settings through this API.

By default, the display, graphics2d, graphics3d and picture decoder Nexus modules will
automatically be initialized and outputs will be connected to the display (e.g. HDMI,
component). This is the simplest approach if the non-DirectFB application does not need to
modify Nexus platform settings that are not exposed within the “DFB_PlatformSettings”
structure.

Running a DirectFB master application

For a “master” DirectFB application, there are three ways in which Nexus can be initialized:

1.

The simplest approach is not to do anything and rely on the internal Broadcom DirectFB
system driver to automatically call into the DFB Platform code with default values to
initialize Nexus and open up the display, graphics2d, graphics3d and picture decoder Nexus
modules. Outputs like HDMI and component will automatically be connected to the
primary display. This is the preferred method as it means the DirectFB application does not
need to be modified to make any explicit “DFB_Platform_xxx()” calls and does not need to
link with the DFB platform shared library (libinit.so).

Use the “DFB_Platform_GetDefaultSettings(
DFB_PlatformClientType_eMasterNexusUninitialized, pSettings)” and
“DFB_Platform_Init(pSettings)” API’s to explicitly initialize Nexus. Again, by default the
Nexus display, graphics2d, graphics3d and picture decoder modules will automatically be
opened and outputs connected to the display. This option is useful, if the default platform
values are not suitable and need modifying.

Use the “NEXUS_Platform_GetDefaultSettings()”, “NEXUS_Platform_lInit()”,
“NEXUS_Platform_GetDefaultStartServerSettings()” and “NEXUS_Platform_StartServer()”
API’s to explicitly initialize Nexus with non-default values. Then use
“DFB_Platform_GetDefaultSettings(DFB_PlatformClientType_eMasterNexuslnitialized,
pSettings)” and “DFB_Platform_Init(pSettings)” to inform DirectFB that Nexus as already
been initialized and that the Nexus server has been started. This option is useful if non-
default Nexus platform settings need to be provided. This case is rarely used for DirectFB
“master” applications.

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012 36

DirectFB 1.4.17 Software Users Guide version 1.3

Running a non-DirectFB slave application

A non-DirectFB “slave” application (Nexus client) is one in which another DirectFB or non-DirectFB
application is the master and initialized Nexus. A “slave” application cannot initialize Nexus, but
can “join” it and can open up additional Nexus modules for its own use. Any Nexus handles that
were opened in either the DirectFB master application or another Nexus application cannot be
shared and used in future Nexus calls in a different process, if the Nexus client process(es) are run
in either “untrusted” or “protected” Nexus security modes. Refer to the Nexus Multi-Application
document for more information (NEXUS_MultiProcess.pdf).

There are two ways in which a non-DirectFB “slave” application can be run:

1. Simply call “DFB_Platform_GetDefaultSettings(
DFB_PlatformClientType_eSlaveNexusUninitialized, pSettings)” followed by
“DFB_Platform_Init(pSettings)”.

2. Make an explicit call to “NEXUS_Platform_Join()” to join Nexus. Then call
“DFB_Platform_GetDefaultSettings(DFB_PlatformClientType_eSlaveNexuslnitialized,
pSettings)” followed by “DFB_Platform_Init(pSettings)”. This case would rarely be used, as
it requires an additional call to Nexus.

Running a DirectFB slave application

For “slave” DirectFB applications, Nexus will have already been initialized. However, “slave”
DirectFB applications can still have control over whether a particular Nexus module that DirectFB
depends on should be opened, as long as only that process consumes the Nexus module (in
“untrusted” and “protected” Nexus security modes.

There are two ways in which a DirectFB slave application can be run:

1. If the “slave” DirectFB application(s) doesn’t need to perform any additional platform
initialization or configuration, then they can simply ignore the Broadcom DirectFB platform
APl entirely. Internally, the DirectFB system driver will call into the platform code to “join”
Nexus and to obtain already opened Nexus module handles.

2. If the “slave” DirectFB application(s) would like to perform any additional initialization or
configuration, then they can do so by using “DFB_Platform_GetDefaultSettings(
DFB_PlatformClientType_eSlaveNexusUninitialized, pSettings)” followed by
“DFB_Platform_Init(pSettings)” API calls. The application would have to explicitly link
against the DirectFB platform library (libinit.so).

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 37

DirectFB 1.4.17 Software Users Guide version 1.3

Terminating a non-DirectFB application

Non-DirectFB applications that have called “DFB_Platform_Init()” must explicitly call
“DFB_Platform_Uninit()” to ensure the system is in a consistent state. This function will release
resources that were previously acquired by the “DFB_Platform_lInit()” call, such as Nexus modules
and outputs. It will only release resources that were opened/created in the call to
DFB_Platform_Init() and in the context of that process.

Terminating a DirectFB application

When a DirectFB application is to be terminated, it can either explicitly call “DFB_Platform_Uninit()”
to ensure the system is in a consistent state or can let the DirectFB system driver automatically call
this function upon shutdown. This function will release resources that were previously acquired by
the implicit or explicit call to “DFB_Platform_lInit()” call, such as Nexus modules and outputs.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 38

DirectFB 1.4.17 Software Users Guide version 1.3

Multi-application support with DirectFB-XS

DirectFB-XS is a Broadcom terminology for running DirectFB with an eXternal Surface compositor
(Nexus surface compositor). In this usage scenario, multiple DirectFB and non-DirectFB applications
can run concurrently and their graphics outputs will be positioned, sized and blended together by
the Nexus surface compositor before provided to the graphics feeder for output on the associated
display. DirectFB can only be built in single-application mode and multiple instances of single-app
DirectFB applications can be run simultaneously with non-DirectFB applications.

Instead of DirectFB accessing a physical framebuffer when it composites graphics on the DirectFB
“layer”, a “virtual” layer / framebuffer is provided. This “virtual” framebuffer is in fact just a Nexus
surface that is blended with other Nexus surfaces by the Nexus surface compositor. The diagram
below helps to illustrate this behaviour.

__________________________ 4 o o e
Mexus Server Application r Master DFB App 0 | IF Slave DFE App r Mon-DFB App r Master DFE App
{unprotected) (Mexus client) | | (MNexus client) (Mexus client) Running in full-screen mode
{untrusted or protected) | | {untrusted) {untrusted or protected) [Mexus client)
| 1 {untrusted or protected)
DFB WindowD | I

Surface I :
|

DFE Window! 1 _ _I — — In| DFB Window1

<

1 |

1 |

1 |

1 |

1 |

1 |

1 |

1 |

: : Surface N T
1 I |
1 I |
1 I |
1 I :
1 | i W
|| Mexus surface | _ _ _ L _ _ a__ DFBIa"vu:luaI I
1 client 0 N T T T T i***T** W ﬁam:gtlffe(:
1 |

1 ! I J'_
1

| T
1 |
1 |
1

1

1

1

1

1

1

1

1

1

1

1

1

————— b Surface

Nexus surface |4 _ _
client 1 e B ikt et P

_____ I+ Nexus surface
""" I client 1

I
] [DFB “virtual”
iy layer/
framebufier

MNexussurface |4 _ . _ L _ _ _ _ _ _ _____ __ . __
client 2 i e e

Nz

On the diagram above, a “Nexus server application” contains the Nexus surface compositor. This is
used to composite Nexus surfaces from different process application spaces. The “Master DFB App
0” and “Slave DFB App” processes help to illustrate what occurs when DirectFB is built and run in
multi-application mode. Here, there is a conventional DFB master application that uses the
DirectFB window compositor to composite graphics from its application and a DFB slave application
on to a “virtual” frame-buffer. This “virtual” frame-buffer is then “pushed” to the Nexus surface
compositor and blended with other “virtual” frame-buffers from “non-DFB App” and other “Master
DFB App” applications. The “Master DFB App” application shown on the far right of the diagram
can be another instance of DirectFB that has been built in single-application mode.

|II

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 39

DirectFB 1.4.17 Software Users Guide version 1.3

The diagram below helps to illustrate what software modules each type of application can call.

DirectFB-XS Multi-App Architecture using Nexus Surface Compositor and no
DFB Screen API calls

! [I - [I
| | | Master DFB App O | | Slave DFB App | | MNon-DFE App | | Mastar DFB App 1 |
| Ne{ﬁ‘s rSnr?:mserdﬁ;pp | | [Mexus client) | | (Nexus client) | | (Mexus client) | | (Mexus client) |
: P | : (untrusted) | : {untrusted) | : {untrusted) | : {untrusted) |
I Nexus T : I DFB I i bFB } I 1 : I DFB :
exus k Limited

! Calls | ! Calls I | | I ||.-I | | Nesxus | | Calis I i
! - P ! — b calle P |
		I'EFB Secure	FusionllPC I'ISIFB		o		I'EFB	
		library [« T t > library				ibrary		
		(master)		(slave)				(master)

| : | DFB Platiorm I | } i : | DFB Platform :
		Calls NOTE: PFB masthrisiave graups are				Calls
		compoaed to He sprean &8 & i, Other				
		OFB v Lty i iepmatont OFS				OFB

Lt viradf be infereaved.
| | | Platform il i | | | | Platform |
! [[- [I
: | : Limited Mexus | : | : | : Limited MNexus 4 |
| lr axus | Calls . ll\r\x\] n "\lﬂ.l.l!-‘l - ll\HXI.?‘d Cals l
| Y e £‘| User-mode Nexus client | e | User-mode Nexus client I BC | User-mode Nexus client ! BC | User-mode Nexus client !
| User-mode Nexus server .I IPC o library [library [library [library !
| library 2 | (libnexus_client.so) : | (libnexus_client so) } | (libnexus_client.so) : | (libnexus_client.zo) :
libnexus o
I (EeA0e 50) miRk Y o r Cl ol |
N, S [1 I [S [I S S [(T S, [I S I
ioct / mmag E é é User Mode
L. 4 ¥ l— i Kearnel Mode

| User-mode driver (bemdriver ko)

What can be seen is that neither the DirectFB nor the non-DirectFB applications directly call the
Broadcom DFB platform library. Instead, the DFB platform layer is only called internally by the
DirectFB application through the core DFB code (during the system initialize/join call). This means
that non-DirectFB applications no longer need to call the DFB platform API’s in order to inform DFB
whether the system has been initialized or not.

Each of the DirectFB and non-DirectFB applications are treated as Nexus clients. They will all join
Nexus, rather than initializing Nexus. Only the Nexus server application is used to initialize Nexus
and it is typically the application that also opens any audio/video outputs. It is the process that will
instantiate the Nexus surface compositor and will typically be the process that instantiates the
Nexus simple audio/video decoders (for playing back of audio/video from a Nexus client
application(s)).

The diagram also helps to illustrate how Nexus client applications communicate with a Nexus
server. In the diagram, Nexus has been built to run in user-space. Each of the DFB and non-DFB
applications will inherently link with the client Nexus user-space shared library. Nexus calls that
affect the underlying hardware will automatically be “marshalled” across to the “Nexus server”
application using the auto-generated thunk (Nexus IPC in the diagram). Here, a “master server”
instance of the Nexus library will actually make the call to the underlying hardware.

For more information about the Nexus multi-application architecture, refer to the
“Nexus_MultiProcess.pdf” document that is bundled as part of the reference software release.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 40

DirectFB 1.4.17 Software Users Guide version 1.3

DirectFB memory management

This is a brief overview of some of the principles of how Broadcom's DirectFB implementation uses
memory.

DirectFB uses three sources of memory:
1. Linux memory (ignored for this discussion).
2. Primary on screen display 'framebuffers'.
3. Off-screen graphics memory.

Memory for cases 2 and 3 are available from the Nexus heaps and are requested using the
“NEXUS_Platform_GetFramebufferHeap()” function in the Nexus platform code.

For case 2, the call used is “NEXUS_Platform_GetFramebufferHeap(0)” for the main display and this
needs to return a handle to a heap which is of type “NEXUS_MemoryType_eFull”.

For case 3, the memory is available from the call to
“NEXUS_Platform_GetFramebufferHeap(NEXUS_OFFSCREEN_SURFACE)” and this should return a
heap handle of type “NEXUS_MemoryType_eApplication”. If DirectFB fails to get a valid heap for
case 3, the offscreen memory, we can set the offscreen heap to be the same as for case 2, the
primary heap.

In a DirectFB multi-application system when we set the client application permissions we only pass
across the heap settings for the offscreen heap (case 3). All the allocations the slave app makes
should be from this heap. If the heap is full, it returns an out of memory error.

For a DirectFB master application if the offscreen heap is full, we are able attempt to allocate from
the primary heap (2), but not for a slave as there is no virtual memory mapping in the slave
applications address space. For security reasons we try and make sure that the slave apps have no
access to hardware or display buffers to reduce the chance of a malicious slave app causing the
system any damage or hijacking the display. If you want to sandbox the slave applications memory
usage you could create a separate heap inside Nexus and return this handle via
“NEXUS_Platform_GetFramebufferHeap(NEXUS_OFFSCREEN_SURFACE)”. This way the slave
applications would have the most limited access to any memory from which they could affect other
system components.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 41

DirectFB 1.4.17 Software Users Guide version 1.3

Changes to DirectFB-1.4.17

This section lists the changes and aditions that Broadcom has made to DirectFB-1.4.17 when
compared with the stock DirectFB-1.4.17 release (from http://www.directfb.org).

The diagram below helps to show the overall DirectFB software architecture, with Broadcom
proprietary DFB software components highlighted in dark blue. These components in dark blue are
all shared libraries that are dynamically loaded into the system at run-time. They are dynamically
linked with the rest of DirectFB to provide additional features and performance improvements.
Only the Broadcom DirectFB platform shared library is accessible to applications. All the remaining
Broadcom DirectFB components are not directly accessible by applications, but instead are
accessible through the DirectFB API (interfaces).

All these Broadcom proprietary software components rely on “Nexus” and is accessible through a
shared library (“libnexus”). Nexus provides access to the underlying hardware through a well-
defined API.

e Application 1 Application 2 s Application N

- L. -,
DirectFB Interfaces
(IDirectFB | IDirectFBSurface | (IDirectFBPalette | (DirectFBVideoProvider] IDirectFBmageProvider]

[IDirectFBScreen] [IDirectFBDispIayLayer] [IDirectFBInpulDevice] [IDirectFBFont] [IDirectFBWindow] =

Core DFB Components
[surfacelbuffer] [windows] [palette] [fonts] [videoptovider] [wm]
[layer] [input] 4 [gfx] [image provider] [Iibfusion]

.

4 BRCM DFB Compgnents

[screen]

BRCM DFB Platform

image provider

4
i
i
i
1
i

k4

A 4 A 4

Kernel Space
[nexus / bcmdriver] linux fusion

Hardware

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 42

DirectFB 1.4.17 Software Users Guide version 1.3

Platform library usage for standard DirectFB

Broadcom provides a DirectFB platform software library that is used to help initialize/join Nexus
(and its required modules) and to support sharing of resources between DirectFB and non-DirectFB
applications. This software library has its own light-weight API that is not part of the original
DirectFB API. DirectFB applications can run without modification, but non-DirectFB applications
(e.g. Nexus applications) must use this APl to keep Nexus and DirectFB synchronized with each

other.

Non-DirectFB applications must link against this shared library (libinit.so or libinit_client.so) and
must call “DFB_Platform_GetDefaultSettings()” followed by “DFB_Platform_Init()”. DirectFB
applications themselves need not be aware of this platform library, as the Broadcom system driver
will automatically call these functions during the system initialization stage. The diagram below
helps to illustrate these concepts:

Nexus server Nexus client it
Applicatian Application DFB Application
= DFB_Platform_Init() = l DFB_Create()
= 5
1 -2
£ BRCM DFB Platform = Core DFB
(=] =
= i’ o
- E E system_initialize() | / system_join()
= .o O
T g T
o NEXUS_Plafform_Init() / =
B NEXUS_Platform_Join() &)
=
DFB_Platform_Init()
A\ 4 Y
Nexus

Platform library usage for DirectFB-XS

The Broadcom DirectFB platform software library is also used when DirectFB is built to use the
Nexus surface compositor. This is also known as “DirectFB-XS” in Broadcom terminology. In this
case, the platform library is used to “join” Nexus, as all DirectFB applications must be run as Nexus
client applications. The platform library is also used to open certain Nexus modules (e.g.
graphics2d, graphics3d, picture decoder), but the handle for each of these modules is not shared
between different processes like they are for standard DirectFB. DirectFB-XS also does not open
the Nexus display, but instead acquires an instance of a Nexus surface compositor client interface.
This interface is used to provide a “virtual framebuffer” for DirectFB-XS to render in to. The
platform library also does not open any Nexus display windows or outputs. These interfaces are
opened and configured in the Nexus server application.

Standard DirectFB applications can run unmodified when DirectFB-XS is built. These applications
will all run as Nexus clients. Non-DirectFB applications no longer need to call the DirectFB platform

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 43

DirectFB 1.4.17 Software Users Guide version 1.3

layer API, as no sharing of handles or resources is permitted (or enabled). The DirectFB platform
layer adds no additional functionality.

Graphics driver

Broadcom provides a highly optimized 2D and 3D graphics driver that will accelerate most drawing
and blitting operations. This graphics driver will accelerate 2D operations when the underlying
hardware is using the M2MC core (blitter). When using the M2MC core, the driver defaults to using
a packet-buffer based API to gain maximum performance. However, the legacy
NEXUS_Graphics2D_xxx() API can still be enabled, but the graphics performance won’t be as high as
for the packet-buffer implementation.

For chips that have a PX3D 3D graphics core (e.g. BCM7420, BCM7413), 3D transformations like
texture mapping, triangle fills, rotation of primitives, etc. are hardware accelerated. For chips that
don’t have this 3D graphics card, software fall back operations are provided. For chips that have
the VC-4 graphics core, customers are encouraged to use the OpenGL ES 2.0 or OpenGL ES 1.1 API’s
to provide these types of operations.

IR and front panel drivers

Broadcom provides infra-red (IR), and keypad (front-panel) drivers to allow interaction with
DirectFB applications. These input device drivers can be optionally compiled in during the build
process. The diagram below helps to illustrate the software architecture.

BRCM Core Input Driver

A
]
|
1
]
1

E dlopen libs E
BT BSA lib BRCM Keycodes libraries DFB Platform
A
e |

NEXUS

The IR input driver allows run-time selection of the IR protocol and IR keycodes mapping file. The
keycodes mapping file is used to convert from native IR command codes to DirectFB input event
codes, The default IR protocol and keycodes mapping file are defined in the build system, but the
user can override this default at compile-time and/or run-time. This means that it is possible to
change the protocol or keycodes mapping file used at run-time without having to recompile
DirectFB.

The run-time selection is available with the following DirectFB config options:
bcmnexus-ir-protocol
bcmnexus-ir-keycodes

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 44

DirectFB 1.4.17 Software Users Guide version 1.3

By default, the “CirNec” keycodes and “CirNec” IR protocol are used that support the Broadcom
silver handset. Previous DirectFB releases supported the “RemoteA” One-For-All handset or black
slim handset by default.

If the user would rather use this older remote control handset to control STBs, then the “RemoteA”
IR protocol and keycodes file can be specified at run-time as follows:

-/rundfb.sh df_input --dfb:bcmnexus-ir-protocol=RemoteA,bcmnexus-ir-
keycodes=RemoteA

If DirectFB-XS is being used, then the run time option cannot be used. In this case, keyboard and ir
protocols can be specified in the directfb_common.inc file found at ‘opensource/directfb/build’
directory or as a compile time option (see below).

The choice of the IR protocol name can be found in the “DirectFB-
Broadcom/inputdrivers/bcmnexus/core/bcmnexus_ir_inputmode.h” header file. This is an auto-
generated header file that extracts the name of the input modes from Nexus. The choice of IR
keycode mapping file can be found in what keycodes modules are built and present in the
“Jusr/local/lib/directfb-1.4-17/inputdrivers/bcmnexus” target directory. For example, if
“libdirectfb_bcmnexus_ir_keycodes_cirnec.so” is present, then “cirnec” can be specified as the
keycodes mapping file at run-time.

If the user wishes to support a different IR protocol or handset, then a new keycodes mapping file
will have to be created and added to the DirectFB build system. If the user would like to override
the default IR protocol and keycodes file at build time, then the following environment variables
can be set to override the defaults:

DIRECTFB_IR_PROTOCOL=XXXXX
DIRECTFB_IR_KEYCODES=yyyyy

The front panel and IR receiver drivers have been designed to mimic the behaviour of a keyboard
by default. This means that if the user presses a key, a single DIET_KEYPRESSED event is generated
and when the key is released a single DIET_KEYRELEASED event is generated. If the key is held
down for longer than the “skip” count, single DIET_KEYPRESSED events are generated with the
DIET_REPEAT flag set.

If the user would like to revert to using the original mechanism whereby both DIET_KEYPRESSED
and DIET_KEYRELEASED events are generated together, then the following runtime DirectFB
options can be specified in the directfbrc file (or set in the DFBARGS envar):

bcmnexus-ir-timeout=0
bcmnexus-key-timeout=0

The list of all IR and KEYPAD options can be found at run-time by using the help option:

e.g. -/rundfb.sh <app> --dfb-help
For example, the IR repeat filter time can be specified with the following run-time option:

bcmnexus-ir-repeat-time=xxx

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 45

DirectFB 1.4.17 Software Users Guide version 1.3

DirectFB Nexus input router

DirectFB 1.4.17 version 1.1 onwards features Nexus Input Router (NIR) as an additional input driver.
NIR allows a server process to capture various input events such as IR, keyboard, and mouse and
send them via IPC to client applications. This allows multiple clients to share system inputs without
contention over the actual hardware devices.

This feature can be used when DirectFB Nexus Surface Compositor (NSC) support is enabled. To
enable DirectFB NIR support, following build flags need to be set.

DIRECTFB_NSC_SUPPORT=y
DIRECTFB_NIR_SUPPORT=y

Enabling DirectFB NIR support suppresses run time loading of the linux_input input driver by adding
an entry during build in directfbrc file as “disable-module=linux_input”.

DirectFB NIR feature requires Nexus server input router application running in the background. The
server NIR application captures various input events like keypad, keyboard and mouse then sends
them via IPC to client applications. Client NIR application then registers for desired input events and
receives them via IPC using Nexus APIs. DirectFB NIR client side code can be found in
platform_nexus_input_router.c in DirectFB Broadcom package in platform directory.

An example NIR server application nxsmaster is provided in DirectFB-Broadcom package. nxsmaster
app gets built when DIRECTFB_NSC_SUPPORT is set to “y” during the DirectFB build.

To test DirectFB NIR input driver, DirectFB example application df_input.c can be used. This can be
tested by first starting the nxsmaster server app as:

./rundfb.sh nxsmaster

Then launch the dfb_input DirectFB example app from separate window/terminal as:
./rundfb.sh join df_input
For more details on Nexus Input Router server and client applications, refer to the Nexus apps

input_router.c and input_client.c in Nexus/examples/multiprocess. Details on how to build these
applications can be found in “Nexus_Usage.pdf” as part of Reference Software Release.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 46

DirectFB 1.4.17 Software Users Guide version 1.3

System driver

Broadcom provides what is known as a “system” driver (shared library) to help initialize the system,
control the layer(s) (framebuffers), manage memory and surface buffers, setup up the display
pipeline (e.g. setting correct video format) and allow different outputs to be added or removed
from a given screen/display. The diagram below helps to depict these key responsibilities.

System driver

System initialisation Surface pool Layer Control Screen control
4 management (with 3DTV support) (display settings)

The system driver is multi-process aware and has the responsibility to marshal memory
allocation/deallocation requests, surface buffer creation/destruction, setting of the graphics
framebuffer(s) and setting of display/screen settings (for standard DirectFB mode) from client/slave
DirectFB applications to the master DirectFB application using fusion IPC. The system driver also
parses all Broadcom specific application options passed in from the command line, DFBARGS envar
or directfbrc file.

For standard DirectFB (non DirectFB-XS) builds, Broadcom supports the DirectFB Screen Encoder
APl and Mixer API to allow a master DirectFB application to setup the video output resolution,
frequency, scan-mode, background colour, etc. The default start up video output resolution is
specified in the “/usr/local/etc/directfbrc” file with the “res=" run-time option. The default is
720p/60Hz, but the user can override this in a number of ways:

1. Modify the directfbrc file.
2. Specify “res=xxx” on the command line (e.g. ./rundfb.sh df_andi --dfb:res=720p50).

3. Specify the “res=xxx” option in the DFBARGS envar (e.g. export DFBARGS="res=720p50").

Ed The complete list of resolutions is available if you type:

“./rundfb.sh df_andi —dfb:help™.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 47

DirectFB 1.4.17 Software Users Guide version 1.3

For standard DirectFB mode, the layer handling code supports both mono and stereo surface layer
buffers. The latter is required when 3DTV stereoscopic graphics are enabled. For chipsets that
don’t have 3DTV capable video processing, the left/right buffers are provided to the display in
“top/bottom half” or “left/right half” orientation. For newer STB chipsets that have 3DTV capable
video processing, the left/right buffers can be provided to the display hardware in additional
formats such as frame-packed. There are new 3DTV DirectFB API’s that Broadcom has provided to
directfb.org and have been incorporated into the DirectFB-1.5.x series. Broadcom have back-
ported these changes to DiretcFB-1.4.17. Refer to DirectFB-1.5.x API’s on the DirectFB website
(http://directfb.org/docs/DirectFB_Reference 1 5/index.html) for more information.

ImageProvider driver

Broadcom provides a hardware accelerated ImageProvider based on the Nexus Picture Decoder.
This can decode GIF, JPEG and PNG images using the underlying Still Image Decoder (SID) hardware.

The ImageProvider() driver for Nexus uses the “Picture Decoder” APl to decode and render an
image into a temporary buffer before being blit (or stretch blit) to the final destination surface. This
last blitting operation is done using the internal DirectFB API’s and does not directly use the Nexus
graphics2d or packet-buffer API directly. This final blit also provides any colour format conversion
between the typical YUV output from the hardware and the final destination surface’s format.

If the image cannot be decoded and rendered (e.g. SID hardware doesn’t support the image), then
the software image providers will render the image to the final destination surface.

The ImageProvider driver for Nexus now supports segmented and streaming decoding. This is
useful when trying to decode and display large sized images that would otherwise require large
amounts of memory.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 48

DirectFB 1.4.17 Software Users Guide version 1.3

Core changes

Broadcom has also fixed bugs and made modifications to the core DirectFB codebase. Below is a
list of changes that have been made against the stock DirectFB-1.4.17 release tarball.

New pixel formats

1. Support for “DSPF_ABGR” pixel format needed to support chips with the VC-4 3D graphics
core.

2. Support for “DSPF_ALUTS8” pixel format needed to support the output of the picture
decoder for indexed pixel formats.

3. Support for “DSPF_LUT4"” needed for some chipsets that have a reduced graphics feeder
pixel format capability.
3DTV stereoscopic support

The core DirectFB code that handles layers, windows, regions and surfaces has been updated to
understand stereoscopic graphics. New API’s have been added to DirectFB to allow the client
application to specify options like stereo depth and which “eye” the rendering should be made to.
SaWMan-1.5.4 has support for the stereoscopic API’s and it the version that should be used in
conjunction with this release.

Colour-space support

DirectFB surfaces now have a colour-space associated with them (e.g. RGB or BT.601). It is now
possible to convert between different colour-space formats (e.g. BT.601 and BT.709) when blitting
between these surfaces. The call to create a surface now accepts a colour-space argument.
Screen changes

1. Ability to specify the picture framing with the screen encoder API (good for 3DTV modes).

2. Ability to specify the aspect ratio for the screen.

DirectFB unit tests
The following additional tests applications have been modified / provided:

1. df_andi: with modifications to allow the user to toggle power mode (press “P”) and/or cycle
around different video output formats (press “0”).

2. df_andi3d: 3DTV stereoscopic graphics tests (“3D penguins”).

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 49

DirectFB 1.4.17 Software Users Guide version 1.3

3. df_stereo3d: enhanced 3DTV stereoscopic graphics test.

4. dfbtest_stereo: a 3DTV stereoscopic full-screen test app.

5. dfbtest_stereo_window: a 3DTV stereoscopic window test app.

6. df_texture3d: 3DTV stereoscopic version of “df_texture”.

7. df_brcmTest: graphics conformance test comparing h/w vs. s/w blits and fill operations.

8. df_dok: benchmark test that has been modified to support flipping, fill triangles and fill
trapezoid test cases.

9. df_flip: this test has been created to check whether flipping a surface is VSync locked or
not.

10. df_input: is used to test the various input devices (e.g. IR or USB keyboard).

11. df_texture3d: is a 3DTV stereoscopic version of texture mapping.

12. dfbtest_layer: is used to test layer repositioning and opacity change.

13. dfbtest_gl: is only available on PX3D capable chips and tests the OpenGL ES 1.0 API.
14. dfbtest_egl_only: is only available on PX3D capable chips and test the EGL API.

15. dfbtest_egl_pixmap: is only available on PX3D capable chips and tests the EGL API.
16. dfbtest_alloc: is used to test memory surface allocations/deallocations.

17. dfbtest_prealloc: is used to test pre-allocation of system or video memory.

18. dfbtest_resize: is used to test resizing of surfaces.

19. df_window_prealloc: used to test system and video memory pre-allocated surfaces.

20. decode_server_dfb: this is a Nexus server/DirectFB master based application available for
standard DirectFB builds that allows a video/audio playback client to be attached

21. decode_client_dfb: this is a Nexus client based application that allows video/audio content
to be played back from a transport stream file. It connects to the already running
decode_server_dfb application and is only available for standard DirectFB builds.

22. playback_dfb: this is a Nexus master/DFB master based video/audio playback application
(standalone) that is only available for standard DirectFB builds.

23. nxsmaster: this is a Nexus master server application only available for DirectFB-XS master
library builds. It is the first application that should be launched before any further DirectFB-
XS or non-DirectFB-XS applications are started.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 50

DirectFB 1.4.17 Software Users Guide version 1.3

24. df_screen_encoder: this example shows how to connect and disconnect various output
connectors from the primary and secondary displays.
Graphics changes
1. Support triple-buffered pre-allocated surfaces from video memory.

2. Added “dfb_gfx_clear()” function to clear a surface buffer. This is used to clear a layer
surface buffer after it has been allocated.

3. Support for drawing multiple triangles in one operation (“FillTriangles()”).
4. Ability to dump out an image in raw format.

5. Support for setting the texture surface within the IDirectFBGL API.

6. Support for colour-space conversion within the core graphics code.

7. Performance optimizations to the generic software-based graphics driver.

8. Ability to obtain the size and constraints from the graphics card when allocating a buffer.

Image provide changes

1. Changes to software based image providers to use the hardware image provider if available
(and enabled) instead.

2. Added support for FFMPEG based image provider (for displaying MPEG-1/2 |-frames and
H.264/AVC I/IDR still pictures).

Font changes

1. Support for italics, reverse italics and bold font attributes.

2. Support for ABGR font pixel-format.

Build system
1. Many compiler warnings have been removed from the code.

2. The build system now uses “silent make” and shows a “CC” or “CCLD” when a file is being
compiled or linked rather than the verbose compilation information. This makes it much
easier to spot errors or warnings.

3. Added the ability to link DirectFB with external shared libraries (e.g. zlib, libpng, libjpeg,
freetype) rather than statically compile them in (saves space).

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 51

DirectFB 1.4.17 Software Users Guide version 1.3

4.

Added support for setting the vendor version string as part of the DirectFB version
information.

Input devices

1.

2.

3.

Other
1.
2.

3.

Input Device fixes to allow the GetLockState() APl to work correctly in the context of a DFB
slave application.

Support hot-plugging of USB keyboard/mice properly (hot-plug thread now exits).

Support for additional picture-in-picture (PIP) input key types.

Surface hints have been added during the creation of a surface.
Surface memory permissions have been added to help improve security.

A new “PreAlloc()” surface pool function has been added to allow pre-allocation of video
and system memory to work reliably in the context of DFB slave applications.

Triple and double buffered window surfaces can now be flipped without artefacts or tearing.
Fusion updated from 8.8.0 to 8.10.4.

Fusion main pool area increased to 16MB to allow more DFB surfaces to be created without
running out of memory in the main pool.

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012 52

DirectFB 1.4.17

Software Users Guide version 1.3

Public API changes to DirectFB-1.4.17

Table 6: Public Function API changes

Function Change

GetStereoDepth() Used on the display layer or window to retrieve the current stereo
depth between the left/right eyes.

SetStereoDepth() Used to shift the left and right eyes in opposite directions horizontally
to provide a 3DTV stereoscopic effect on the layer or window.

GetStereoEye() Only applicable to layer/window surfaces that have a stereo pair on
underlying buffers. This API will retrieve which set of buffers (left or
right) is active for graphics operations on this surface.

SetStereoEye() Only applicable to layer/window surfaces that have a stereo pair on

underlying buffers. This API will specify which set of buffers (left or
right) is used for future graphics operations on this surface.

FlipStereo()

Flip/update stereo surface buffers simultaneously to ensure
synchronisation between the two left/right buffers. This API is only
applicable to surfaces that have a stereo pair of underlying buffers.

DumpRaw() The APl will dump the raw contents of the specified surface to a file.
Table 7: Public definition API changes
Definition Change

DFB_NOALLOCATION

Error to signify that a buffer allocation could not

succeed.

DSPF_ABGR This new pixel format is necessary to support VC-4’s
texture pixel output format.

DSPF_LUT4 Provides 16 entry palette pixel format.

DSPF_ALUT8 This new format is necessary to support the still image

decoder’s output.

DLCAPS_LR_MONO

Specifies that the layer can support a L/R mono
stereoscopic display.

DLCAPS_STEREO

Specifies that the layer can support an independent L/R
stereoscopic display.

DLCAPS_FOLLOW_VIDEO Used to signal that video metadata can be used to

specify the z-depth on layers with DLOP_LR_MONO or
DLOP_STEREO.

DLOP_LR_MONO

Specifies that a layer has a single set of surface buffers
and a stereo depth.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 53

DirectFB 1.4.17

Software Users Guide version 1.3

Definition

Change

DLOP_STEREO

Specifies that a layer has two independent surface
buffers (left/right) with unique content.

DSDESC_COLORSPACE

Specifies that the colour space field for the surface
description is valid.

DSCAPS_GL

Specifies that the surface data is stored in memory that
is accessible by a GL (e.g. OpenGL / OpenVG)
accelerator.

DSCAPS_STEREO

Specifies that the surface contains both left/right
buffers.

DFXL_FILLTRIANGLES

Signals that the “FillTriangles()” APl is accelerated.

DWDESC_COLORSPACE

Specifies that the window description’s colour space
field is valid.

DWCAPS_LR_MONO

Specifies that a window has a single set of surface
buffers and a stereo depth.

DWCAPS_STEREO

Specifies that a window has two independent left/right
buffers each with unique content.

DFFA_ITALIC

Specifies that the Font should be displayed with italics.

DFFA_REVERSE_ITALIC

Specifies that the Font should be displayed with reverse
italics.

DFFA_BOLD

Specifies that the Font should be displayed in Bold.

DFDESC_RESOURCE_ID

Provides a unique resource ID for the font.

DLCONF_COLORSPACE

Specifies that the layer colour-space can be set.

DLSO_FIXED_LIMIT

Specifies the absolute maximum positive or negative
value used for setting the stereo depth on a layer

DSECAPS_FRAMING

Allows the HDMI picture framing to be specified in the
encoder config.

DSECAPS_ASPECT_RATIO

Allows the display aspect ratio to be specified.

DFBScreenEncoderPictureFraming

New structure that specifies the picture framing that
can be sent to the screen encoder.

DSEPF_MONO

Screen encoder picture framing is non-stereoscopic.

DSEPF_STEREO_SIDE_BY_SIDE_HALF

Also known as “L/R” frame packed mode. The left and
right stereo pair images are decimated by 50% and
placed side-by-side in an existing frame and output
every VSync period.

DSEPF_STEREO_TOP_AND_BOTTOM

Also known as “Over-Under” frame packed mode. The
left and right stereo pair images are decimated vertically

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012

54

DirectFB 1.4.17

Software Users Guide version 1.3

Definition

Change

by 50% and placed in an existing frame that is output
every VSync.

DSEPF_STEREO_FRAME_PACKING

The left/right images are output sequentially at full-
resolution This stereoscopic mode is only available for
HDMI 1.4a capable STB platforms and TVs.

DSEPF_STEREO_SIDE_BY_SIDE_FULL

The left/right images are output at full resolution, but
are packed in a frame that is twice the width of a single
frame. This stereoscopic mode is only available for
HDMI 1.4a capable STB platforms and TVs.

DFBDisplayAspectRatio

New structure that specified the aspect ratio of the
screen.

DSECONF_ASPECT_RATIO

Specifies that the aspect ratio should be sent for the
screen set encode configuration.

DSECONF_FRAMING

Specifies that the picture framing should be sent for the
screen set encoder configuration.

DFBSurfaceStereoEye Enumeration for left/right stereo eye buffer.

DSSE_LEFT Specifies that the left eye buffer should be used for all
subsequent graphics operations on this surface.

DSSE_RIGHT Specifies that the right eye buffer should be used for all

subsequent graphics operations on this surface.

DWSO_FIXED_LIMIT

Specifies the absolute maximum positive or negative
value used for setting the stereo depth on a window.

Broadcom Corporation Proprietary and Confidential

Revised: October 18, 2012

55

DirectFB 1.4.17 Software Users Guide version 1.3

Testing DirectFB

Testing the IR input

The current DirectFB IR driver supports the Broadcom silver remote control by default (NEC
protocol).

The best application to test the IR remote control is “df_input”. You can run this test application by
entering in the following command:

cd Zusr/local/bin/directfb/1.4
-/rundfb.sh df_input

Then you can press any key on the handset and you should see the name of the key and key code
displayed on the display. If the key is held down on the remote control, the repeat event should be
set.

Testing the front panel input

Before the front panel input can be tested, DirectFB needs to be built with the keypad driver
enabled. This can be achieved by ensuring that “DIRECTFB_KEY_INPUT” environment variable is
set.

e.g. export DIRECTFB_KEY_INPUT=y

Secondly, there is a known issue with the Nexus/magnum drivers that requires the LED controller to
be initialized first. Instead of placing the burden on DirectFB to initialize the LED controller (which
could interfere with an application that already opens the LED controller), it was decided instead to
wait for the drivers to rectify this initialization problem. As a result, it is necessary to run a test
application first to initialize the front panel LED controller prior to running any DirectFB test
application that requires front panel input control. The nexus “frontpanel” example application is
recommended to be run first prior to running the require DirectFB application.

Example:

-/nexus frontpanel
-/rundfb.sh df_input

Ed This assumes you have already compiled the Nexus example applications and have copied the
executables and “nexus” script to “/usr/local/bin/directfb/1.4”. If you are unsure of how to
compile the Nexus example applications, then refer to the document “Nexus_Usage.pdf” that
should be part of the reference software release.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 56

DirectFB 1.4.17 Software Users Guide version 1.3

Testing different blitting and drawing modes

There is a specific test called “df_brcmTest” that runs through many different blitting/blending and
drawing operations with the hardware acceleration output displayed in a window on the left-hand
side the screen and the software fall back mechanism displayed in its own window on the right-
hand side the screen (side-by-side for comparison). The user simply needs to press the <OK> or
<SELECT> key on the IR handset to progress through the different tests.

The test also accepts setting the “blittingflags” and “drawingflags” environment variables to test
additional blitting and drawing scenarios (such as Destination colour keying). For example, to test
source colour keying on all blitting/blending test cases, you need to set the “blittingflags”
environment variable as follows (prior to running the test).

export blittingflags=0x08
To test destination colour keying for all blitting test cases, you need to set the environment variable
as follows:

export blittingflags=0x10

Ed These values are determined by looking at the “DirectFB-1.4.17/include/directfb.h” header
file and reviewing the “DFBSurfaceBlittingFlags” typedef.

The test defaults to an ARGB pixel format for the graphics layer/plane, but any valid pixel format
can be set by modifying the df_brcmTest.c file in the “DirectFB-1.4.17/tools” directory and setting
the following define to the required format:

#define PRIMARY_PIXELFORMAT DSPF_XXXX

Where: XXXX is one of the pixel formats as defined in “DirectFB-1.4.17/include/directfb.h”.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 57

DirectFB 1.4.17 Software Users Guide version 1.3

Performance tests

Both “df _andi” (Penguins) and “df dok” are good benchmarking tests to check the overall graphics
performance of the target platform.

“df_andi” measures real-world blitting performance by seeing how many penguin blits can be
sustained at a given number of frames per second. The graphics performance is proportional to the
number of penguins and fps (frames per second) displayed at the top left-hand corner of the
screen. The number of penguins can be increased by pressing the <S> key on the target platform’s
USB keyboard. Also, the number of penguins can be decreased by pressing the <D> key on the
keyboard. Pressing the <SPACE> bar will cause the penguins to form a logo and pressing <R> will
cause them to revert to moving around the screen. Pressing <P> will power up/down the screen.
Pressing <O> will cause the output resolution to change. Pressing <M> will toggle mirroring of the
primary graphics frame-buffer to the secondary display. Pressing <Q> will quit the application.

“df_dok” is a true benchmarking test that measures CPU load and graphics blitting / drawing
performance. It shows the CPU load in square brackets along with a print out of the number of
graphics operations per second of each test (e.g. Mpixels/s, Kchars/s).

Ed There will be a significant difference in CPU load when running DirectFB in release mode vs.
debug mode. To obtain the best results, always build DirectFB with “B_REFSW_DEBUG=n"
(release mode).

Ed Building the Nexus and magnum drivers in release mode (B_REFSW_DEBUG=n) will also
provide a significant increase in some hardware accelerated operations.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 58

DirectFB 1.4.17 Software Users Guide version 1.3

Supported platforms
The table below lists the Set-Top platforms that this release of DirectFB supports.

Table 8: Supported platforms

Platform Comments

BCM97231 OpenGL ES2.0 support (VC4) / Stereoscopic hardware support
BCM97241 OpenGL ES2.0 support (VC4) / Stereoscopic hardware support
BCM97346 OpenGL ES2.0 support (VC4) / Stereoscopic hardware support
BCM97358 No OpenGL 3D support / Stereoscopic hardware support
BCM97409 OpenGL ES1.0 support (PX3D)

BCM97420 OpenGL ES1.0 support (PX3D)

BCM97425 OpenGL ES2.0 support (VC4) / Stereoscopic hardware support
BCM97429 OpenGL ES2.0 support (VC4) / Stereoscopic hardware support
BCM97435 OpenGL ES2.0 support (VC4) / Stereoscopic hardware support
BCM97552 No OpenGL 3D support / Stereoscopic hardware support

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 59

DirectFB 1.4.17 Software Users Guide version 1.3

Frequently asked questions (FAQ)

How do | enable debugging on a per-module basis in DirectFB?
To enable debugging for “module_identifier”, you can do it 3 different ways:
1. On the target platform export DFBARGS like this:

export DFBARGS="debug=module_identifier,debug=module2_identifier”

2. Edit “/usr/local/etc/directfbrc” and add the lines:

debug=module_identifier debug=module2_identifier ..

3. Pass the debug options on the command line:
-/rundfb.sh df_dok --dfb:debug=module_identifier,debug=module2_identifier
For the DirectFB platform layer the Nexus / Magnum debug system is used. The exact syntax used
varies depending on whether you are using kernel or user space Nexus drivers.
Here is an example of how to set some variables in Linux user mode:
export msg_modules=platform_nexus_init
In the kernel mode configuration, variables can be passed in using the configuration environment

variable, using the following syntax:

export config="msg_modules=platform_nexus_init”

The config variable should then be passed to the nexus module when it is being inserted.

e.g. insmod nexus.ko config=$config

How do | enable back-tracing in DirectFB?

One other useful debug tool is to enable a back-trace whenever DirectFB receives a signal. Add the
option "TRACE=y" to you make command. This is also the option that should be set when using gdb
to help debug DirectFB issues.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 60

DirectFB 1.4.17 Software Users Guide version 1.3

How can I disable hardware acceleration and use the generic DirectFB
software graphics functions instead?

You can pass the "no-hardware" option to DirectFB like this for example:

e.g. export DFBARGS="no-hardware"

This is useful if you are unsure whether the hardware accelerated version is doing the correct
graphics operation, or you want to measure the performance with and without hardware
acceleration.

How can | tell what size surfaces are being created?
Why can’t | see memory for my surface being allocated on creation?

DirectFB implements a lazy surface allocation scheme. The Broadcom DirectFB system driver uses
NEXUS_Surface_Create() to create a buffer that is associated with each DirectFB surface. This
buffer is normally only allocated at the very first Lock() call on the surface. This Lock() call can be
made either by the CPU explicitly or internally by the GPU/blitter. When a surface is first locked, a
buffer will be allocated for it and the code to do this is in bcmnexus_pool.c. To see the size of the
buffer (Nexus surface), you can enable debugging for the bcmNexus/Pool module identifier.

e.g. export DFBARGS="debug=bcmNexus/Pool""

Blending multiple windows together doesn't look right - why?

Have a look at the following twiki page to better understand how your application should use
Porter-Duff and Blitting flag calls to blend multiple surfaces together:

http://directfb.org/wiki/index.php/Blending HOWTO

How do | change the cursor in DirectFB?

The best method is to load in an image and then set the cursor using the layer or window
“SetCursorShape()” function.

The sample code below presumes you want to use a PNG file called cursor.png from
“fusr/local/share/directfb-1.4.17/images” which is 32x32 pixels.

IDirectFBDisplayLayer *layer;
IDirectFBSurface *cursurface;
IDirectFBImageProvider *provider;
DFBSurfaceDescription desc;

DFBCHECK(dfb->CreatelmageProvider(dfb,
DATADIR"/cursor.png",
&provider));

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 61

DirectFB 1.4.17 Software Users Guide version 1.3

desc.flags = DSDESC_WIDTH | DSDESC_HEIGHT | DSDESC_CAPS;

desc.width = 32;
desc.height = 32;
desc.caps = DSCAPS_NONE;

DFBCHECK(dfb->CreateSurface(dfb, &desc, &cursurface));

DFBCHECK(provider->RenderTo(provider, cursurface, NULL));
provider->Release(provider);

DFBCHECK(layer->SetCursorShape(layer,cursurface,0,0));

When using the SaWMan window manager, you can have different cursors for different windows,
see df window.c for an example.

Broadcom Corporation Proprietary and Confidential
Revised: October 18, 2012 62

