

220 Bristol Business Park, Coldharbour Lane, Bristol, BS16 1FJ, UK Phone: +44 1179062700 •

DIRECTFB 1.4.1 PHASE 3.0

Software Users Guide

Version 1.0

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 2 of 50 Company Confidential

REVISION HISTORY

Revision Number Date By Change Description

1.0 18
th

 March 2011 Rob McConnell Initial Version

REFERENCES

Reference Description Version/

Date

1 DirectFB-1.4.1_Phase3.0_Feature_List.pdf A7

2 BroadcomReferencePlatformSetup.pdf STB_Platform_SWUM101-R

3 BrutusIntallationGuide.pdf STB_Brutus_SWUM202-R

4 Nexus Usage Guide STB_Nexus-SWUM204-R

5 Nexus Architecture Guide STB_Nexus-SWUM104-R

6 Nexus Development Guide STB_Nexus-SWUM302-R

7 http://www.directfb.org N / A

This document contains information that is confidential and proprietary to Broadcom® Corporation (Broadcom) and may not be
reproduced in any form without express written consent of Broadcom. No transfer or licensing of technology is implied by this

document. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not
assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit

described herein, neither does it convey any license under its patent rights nor the rights of others.

Copyright © 2002, 2011 by Broadcom Corporation. All rights reserved.

Broadcom and the pulse logo® are trademarks of Broadcom Corporation and/or its subsidiaries in the United States and certain
other countries. All other trademarks are the property of their respective owners.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 3 of 50 Company Confidential

TABLE OF CONTENTS

1 INTRODUCTION ... 5

1.1 OVERVIEW.. 5
1.2 AUDIENCE .. 5
1.3 PREREQUISITES .. 5
1.4 MAIN CHANGES FROM DIRECTFB-1.4.1 PHASE 2.5 .. 6

2 DELIVERABLES ... 8

3 INSTALLATION ... 9

3.1.1 Introduction .. 9
3.1.2 Full Release ... 9
3.1.3 Limited Release ... 9

4 BUILDING .. 10

4.1.1 Step 1: Host Machine Tools Check .. 10
4.1.2 Step 2: Environment Variables .. 10
4.1.3 Step 3 : Driver Build Check .. 12
4.1.4 Step 4A: Building DirectFB in Single-Application Mode ... 12
4.1.5 Step 4B: Building DirectFB in Multi-Application Mode ... 13
4.1.6 Building DirectFB Tests ... 14
4.1.7 Building DirectFB Examples .. 14
4.1.8 Building FusionDale ... 14
4.1.9 Building ++DFB .. 15
4.1.10 Building DiVine ... 15
4.1.11 Building Insignia Test Harness .. 15
4.1.12 Build Tacho Test Harness .. 15
4.1.13 Building External Applications .. 16
4.1.14 Additional Make Targets .. 16
4.1.15 Additional Make Flags .. 18

5 RUNNING DIRECTFB ON THE TARGET PLATFORM ... 23

5.1.1 Single Application Mode ... 23
5.1.2 Multi-Application Mode ... 26
5.1.3 Running Texture Mapped Graphics Applications ... 27
5.1.4 Running OpenGL ES 1.0 Graphics Applications ... 27
5.1.5 Run-time Environment Variables ... 28
5.1.6 Running DirectFB Examples .. 29
5.1.7 Running FusionDale .. 30
5.1.8 Running SaWMan (multi-application mode) .. 31
5.1.9 Running ++DFB ... 32

6 ADDITIONAL INFORMATION ... 33

6.1 BUILD SYSTEM INFORMATION .. 33
6.2 RUNNING MULTIPLE APPLICATIONS IN SEPARATE PROCESSES .. 35

6.2.1 Running non-DirectFB and DirectFB Applications ... 35
6.3 CONFIGURING THE KERNEL TO ENABLE USB INPUT DEVICES ... 36

6.3.1 Broadcom 2.6.12 and 2.6.18 Kernels .. 36
6.3.2 Broadcom 2.6.31 Kernels .. 38

6.4 MAKING A LIMITED DIRECTFB RELEASE ... 39
6.4.1 Step 1 - Making a debug limited release with kernel-space Nexus drivers........................ 40 Con

fid
en

tia
l to

 B
ro

ad
co

m C
or

po
ra

tio
n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 4 of 50 Company Confidential

6.4.2 Step 2 - Making a debug limited release with user-space Nexus drivers 40
6.4.3 Step 3 - Making a non-debug limited release with kernel-space Nexus drivers 40
6.4.4 Step 4 - Making a non-debug limited release with user-space Nexus drivers 40

7 CHANGES ... 41

7.1 BUILD SYSTEM .. 41
7.2 GRAPHICS DRIVER .. 41
7.3 IR AND FRONT PANEL DRIVER ... 42
7.4 SYSTEM DRIVER ... 44
7.5 IMAGEPROVIDER DRIVERS .. 44
7.6 PUBLIC API CHANGES ... 45

8 TEST NOTES .. 46

8.1 TESTING THE IR INPUT .. 46
8.2 TESTING THE FRONT PANEL INPUT .. 47
8.3 TESTING DIFFERENT BLITTING AND DRAWING MODES .. 48
8.4 PERFORMANCE TESTS .. 49
8.5 SUPPORTED PLATFORMS .. 50

 LIST OF TABLES
Table 1 - Software deliverables ... 8
Table 2 - Documentation deliverables ... 8
Table 3 – Make Targets .. 16
Table 4 – Make Flags .. 18
Table 5 – Run-time environment variables ... 28
Table 6 – Public Function API changes .. 45
Table 7 – Public Definition API changes ... 45
Table 8 – Supported Platforms ... 50

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 5 of 50 Company Confidential

1 INTRODUCTION

1.1 OVERVIEW

DirectFB stands for Direct Frame Buffer. "DirectFB is a thin library that provides hardware graphics
acceleration, input device handling and abstraction, integrated windowing system with support for
translucent windows and multiple display layers, on top of not only the Linux Frame buffer Device.

It is a complete hardware abstraction layer with software fallbacks for every graphics operation that is not
supported by the underlying hardware. DirectFB adds graphical power to embedded systems and sets a
new standard for graphics under Linux. (See http://www.directfb.org for more details).

This document describes how to install, build and run DirectFB-1.4.1 on a Broadcom DTV/set-top
reference platform.

1.2 AUDIENCE

This document is aimed for individuals who have an engineering background and already know how to
build the standard reference software for a STB/DTV platform. This document assumes the user is
familiar with the standard reference software tools such as “make”.

1.3 PREREQUISITES

You must have the following before building and running DirectFB on a reference platform:

 A Broadcom reference platform (DTV or Set-Top) and USB keyboard / mouse to connect to it.

 A host PC or build server upon which to install the DirectFB source code and build it. It must have
the Broadcom MIPS cross-compilation tool chain installed.

 A DHCP server running on the same network as the reference platform is connected to.

 Knowledge of the “vi” UNIX editor to be able to edit text on the reference platform.

 Bash shell to execute the installation and build steps on the host / build server.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

http://www.directfb.org/

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 6 of 50 Company Confidential

1.4 MAIN CHANGES FROM DIRECTFB-1.4.1 PHASE 2.5

DirectFB-1.4.1 Phase 3.0 adds support for many of the new 40nm chips, such as the 7422, 7425, 7231,
7344 and 7346. The directory structure where the overlay files are stored (“...directfb/src/broadcom_files”)
has been radically changed. In DirectFB-1.4.1 Phase 2.5, the “1.4” directory contained the superset of
changes that were applied to the official DirectFB-1.4.1 source code. The “1.4.1” directory then contained
only “1.4.1” specific changes (a subset) that were overlaid after the “1.4” superset changes were copied
on top of the original DirectFB-1.4.1 source code. The problem with this approach was that it was not
scalable and trying to support additional versions of DirectFB was cumbersome. It was not always clear
which directory a specific version of a file should be placed and different versions of a file were saved
separately in our SCM system.

With DirectFB-1.4.1 Phase 3.0, each directory version of DirectFB has a full superset of files (e.g. “1.4.1”
and “1.4.5”) and only the files in that directory are overlaid on to the official DirectFB-1.4.1 source tree.
Different versions of a particular file are now handled internally with branches in our SCM system. This
means that there does not exist multiple copies of the same file with different contents, but rather a single
file with a complete history (including history for branches). This allows for easier merging of changes
between different versions of DirectFB and to more easily support different versions of DirectFB going
forward.

On the graphics side, DirectFB-1.4.1 Phase 3.0 now supports dithering of ARGB4444 pixel format. We
now support LUT4, ALUT8, ABGR, YUY2, UYVY and AYUV pixel formats. Both the core DirectFB
graphics driver and the Broadcom graphics driver support drawing of trapezoids. The driver now also
supports basic graphics operations performed on the ZSP DSP core, for chips that do not have a M2MC
(memory-to-memory compositor) core. The BatchBlit2() API has also been back-ported to allow dual
source blits to occur in a single pass of the M2MC blitter core. We now support improved graphics
performance and less CPU loading by directly using the packet buffer interface with Nexus/magnum. This
drastically increases the graphics performance when dealing with small sized blits or fills. Finally, the
SetMatrix() API call has been added to allow translations and transformation to take place on blit and
drawing graphics operations.

Font caching always used to consume a fixed amount of memory. With DirectFB-1.4.1 Phase 3.0, it is
now possible to limit the glyph cache width and number of rows using DirectFB run-time options. This is
particularly helpful for applications that create a large number of fonts without destroying them. Without
these options, it is possible to run out of physical graphics heap memory.

A new font Dispose() call has been added to help release the resources and memory consumed during
the creation of the font whilst still allowing the font handle to exist. If the font is referenced again, the
resources will automatically be reclaimed. This allows a well-written application to release font resources
when it wants to without having to Release() the font first.

On the platform side, a new Broadcom DirectFB Platform API has been added to allow multiple
applications to communicate Nexus information to the DirectFB platform code. For example, it is now
possible for a non-DirectFB application to initialize Nexus, open up its own Nexus Display handle and
inform DirectFB of this handle using a combination of “DFB_Platform_GetDefaultSettings()” and
“DFB_Platform_Init()”.

The default DirectFB configuration file has been updated to set the smooth upscaling/downscaling options.
It now defaults to setting the background color to full transparent black to allow video to be more easily
observed behind any graphics.

 Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 7 of 50 Company Confidential

On the system driver side, many optimizations have been made to improve performance. Below is a list of
some of these optimizations:

1. Memory bandwidth reduction by reducing how often the secondary layer is updated when mirrored
from the primary layer. This is achieved by a run-time configuration option that specified the
“update_skip_cnt”. In essence this reduces the blit frequency from the primary graphics layer to
the secondary.

2. Preallocated surfaces in video memory are now supported, meaning that graphics hardware
acceleration is enabled on them.

3. We now only make the call to set the graphics framebuffer in Nexus if the handle has changed.
This improves the performance of flip calls that use the “UpdateRegion” mechanism for updating
the graphics framebuffer.

4. Now use pthread mutexes and conditionals to improve performance over fusion skirmishes.

5. The core DirectFB code and our system driver now support partial updates of the layer code.
Instead of blitting the complete back-buffer contents to the front-buffer on a flip() when a portion of
the region is updated, the code now effectively swaps the back buffer with the front buffer and
then blits only the dirty rectangle from the new front buffer contents to the back buffer to maintain
coherency.

The system driver has been re-architected for more stable multi-application support. Only the master
DirectFB application can now set the graphics framebuffer and other display settings. The master
DirectFB application is also the only process in the system that can create and destroy Nexus surfaces
and Nexus memory.

The “ShutdownLayer()” API call was back ported to the system driver to cleanup resources that were
claimed during the InitLayer call.

The system driver now also supports additional 24Hz, 25Hz and 30Hz video formats (e.g. 720p/25 and
1080p/24), both statically (with “res=xxx” run-time option) and dynamically (using the screen
SetEncoderConfiguration() API). It now supports setting the frequency, resolution and scan mode of the
video output format allowing the application to support different digital and analog TV standards (e.g. 720p
50/60Hz).

The Broadcom system code now adds the ability to render graphics on the video plane by adding an
additional DirectFB layer (“video layer”). This is particularly useful when wanting to use the picture
improvement video processing pipeline on graphics (e.g. improve quality of JPEG images).

The IR input driver has been modified to allow run-time selection of the desired IR protocol and keycodes
mapping (translation) module. This allows for handsets with different IR protocols to be supported with a
single binary, without the need to recompile DirectFB. For windowed applications, it is now possible to
determine whether the IR or keypad input event has the repeat flag set.

We now support Bluetooth remote controls that are used in conjunction with the Broadcom Bluetooth
software stack.

The Voodoo code has been updated to use “port” rather than “session” when communicating between the
remote server and client.

 Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 8 of 50 Company Confidential

2 DELIVERABLES
This section describes what is contained in the release including software and documents.

Table 1 - Software deliverables

Description Version/file Licensing

DirectFB 1.4.1 Phase 3.0 reference software Phase 3.0 / 20110318 Broadcom SLA

Table 2 - Documentation deliverables

Description Version/date

DirectFB 1.4.1 Phase 3.0 Software Users Guide (this
document)

1.0

DirectFB-1.4.1_Phase3.0_Feature_List.pdf A7

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 9 of 50 Company Confidential

3 INSTALLATION

3.1.1 Introduction

The DirectFB-1.4.1 Phase 3.0 release can be obtained in two “flavours”. The first is a full release
containing both open source software and Broadcom SLA specific code. Typically, the DirectFB graphics,
system, input and image provider drivers come under the Broadcom SLA and are built as shared libraries.
Please refer to section 3.1.2 for information on installing from a full release.

For customers who have not signed an SLA, a “limited” release can be obtained whereby these modules
are supplied in library format only. Please refer to section 3.1.3 for information about how to install from a
limited release.

3.1.2 Full Release

The standard reference software (Nexus/Magnum) source code should be available (untared) prior to
installation of the DirectFB-1.4.1 Phase 3.0 reference software. If you are unsure of how to do this, please
refer to the “Brutus Installation Guide” that comes as part of the reference software release.

On the host (build) machine, navigate to the root of the reference software source tree and type:

tar xzvf DirectFB-1.4.1_Phase3.0_20110318.tgz

This will overwrite any existing “AppLibs/opensource/directfb” dir (and subdirs).

You will now be ready to build the DirectFB source code from the
“AppLibs/opensource/directfb/build/1.4.1” directory.

3.1.3 Limited Release

A limited release does not require any standard reference software to be installed first (e.g.
Nexus/magnum). On the host (build) machine choose a directory to navigate to in which the limited
DirectFB-1.4.1 Phase 3.0 release will be untared. Then execute the following command:

tar xzvf DirectFB-1.4.1_Limited_Phase3.0_20110318.tgz

You will now be ready to build the DirectFB source code from the
“AppLibs/opensource/directfb/build/1.4.1” directory.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 10 of 50 Company Confidential

4 BUILDING

4.1.1 Step 1: Host Machine Tools Check

Before commencing the build, please ensure that the version of GNU make is 3.80 or higher on your host
build machine. You can test what version of make you are using by issuing the following command:

make –version

An earlier version of this will result in DirectFB not being built and you will need to upgrade your make
package on the host build machine.

NOTE: On the Broadcom build server the latest version can be found in /tools/oss/bin. You
would need to set your PATH environment variable as follows:

export PATH=/tools/oss/bin:$PATH

and also the MAKE environment variable as follows:

export MAKE=/tools/oss/bin/make

4.1.2 Step 2: Environment Variables

Make sure you have the reference software environment variables setup correctly. The important ones
are the following:

PLATFORM, BCHP_VER, LINUX, SMP

Example:

export PLATFORM=97405

export BCHP_VER=B0

export SMP=y

export LINUX=/opt/brcm/linux-2.6.18-7.7

By default the Nexus and magnum drivers will be built in user-space, however you can override this
behavior by setting the “MODE” envar to “proxy” and “KERNELMODE=y”. This will ensure the drivers are
built in kernel-space with a “proxy” shim layer to translate the API calls to Linux syscalls (ioctl‟s) and back
again.

Example:

export MODE=proxy

export KERNELMODE=y Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 11 of 50 Company Confidential

If you are building for the BCM935230, BCM935251, BCM93556 or BCM93549 DTV platforms, then
please ensure that the envar “LINUX_DEFCONFIG” is set to point to the default Linux config file, relative
to the Linux source tree root.

Example:

export LINUX_DEFCONFIG=arch/mips/configs/bcm93548b0-xxxxxx"

Where: xxxxx is the remainder of the config filename.

NOTE: Failure to setup this envar for the above platforms will result in the “linux-fusion”
IPC kernel module not being built when in multi-application build mode (i.e. when
DIRECTFB_MULTI=y).

NOTE: You can speed up the build process on multi-processor machines by ensuring that
either MULTI_BUILD=y or MAKE_OPTIONS=-j? is set where ? specifies how many make
jobs can be run in parallel (e.g. make MAKE_OPTIONS=–j4).

By default, DirectFB and the drivers will be built in DEBUG mode. This can have performance penalties
and it is strongly recommended that the user switch to a non-DEBUG mode after monitoring the drivers
and DirectFB for any warnings or errors. To switch to a non-DEBUG mode (a.k.a. RELEASE mode),
please ensure that the environment variable “DEBUG” is set to “n”.

Example:

export DEBUG=n

The default is to build DirectFB and the drivers in little-endian mode. If the user wishes to run the platform
and DirectFB/drivers in BIG endian mode, then the “ARCH” environment variable needs to be specified as
“mips-linux-uclibc”.

Example:

export ARCH=mips-linux-uclibc

Finally, make sure your PATH environment variable is setup correctly to point to your MIPS cross-
compilation tool chain.

Example:

export PATH=/opt/toolchains/crosstools_hf_linux-2.6.18.0_gcc-4.2-11ts_uclibc-

nptl-0.9.29-20070423_20090508/bin:$PATH

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 12 of 50 Company Confidential

4.1.3 Step 3 : Driver Build Check

Please note that this step is only required if building from a “full release”. For a “limited” release, this step
can be skipped.

Make sure you have already built the Nexus/magnum drivers with the same environment variable settings
as in Step 1 above. If not, then you can manually do it this way:

cd nexus/build

make

NOTE: You can speed up the build process on multi-processor machines by specifying the
“-j” option to make (e.g. make –j4)

4.1.4 Step 4A: Building DirectFB in Single-Application Mode

DirectFB can be built in different modes of operation known as “single-application” and “multi-application”.
Single-application mode is typically used in situations where there is only a single application accessing
the DirectFB API‟s. A single application is typically a single process with or without multiple threads. If
more than one application or process is required to access DirectFB concurrently, then DirectFB will need
to be built in multi-application mode using the “DIRECTFB_MULTI=y” make build option.

To build DirectFB without multi-application mode support you need to follow these steps:

cd AppLibs/opensource/directfb/build/1.4.1

make && make tarball

NOTE: This will build DirectFB using the zlib, libpng, libjpeg and freetype libraries from the
“AppLibs/opensource” directory. If these software components do not exist under this
directory or the make option “DIRECTFB_APPLIBS=n” is specified, then these software
components are taken from the older “BSEAV/lib” directory.

The build process will first check to see whether your host build tools are at the correct minimum version
before proceeding. It will then check to ensure that the Nexus drivers are present. If Nexus cannot be
found, then the build process aborts and warns the user to recompile Nexus. DirectFB only supports
“proxy” mode drivers (drivers in kernel-space with proxy layer) and user mode drivers (server/master
only).

The build process will then check to see whether the DirectFB-1.4.1 source tree already exists in
“AppLibs/opensource/directfb/src/DirectFB-1.4.1”. If not, then the standard DirectFB-1.4.1.tar.gz tarball
from the “AppLibs/opensource/directfb/src/directfb_tarballs” directory will first be untared to create the
“AppLibs/opensource/directfb/src/DirectFB-1.4.1” directory. The next step will then be to copy the
contents of the “AppLibs/opensource/directfb/src/broadcom_files/public/DirectFB/1.4.1” directory on top of
the newly created DirectFB-1.4.1 source tree. This step is necessary, as the standard DirectFB tarballs Con

fid
en

tia
l to

 B
ro

ad
co

m C
or

po
ra

tio
n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 13 of 50 Company Confidential

don‟t have all the Broadcom specific changes and drivers. This public directory contains only open-source
components.

If the “AppLibs/opensource/directfb/src/broadcom_files/private/DirectFB/1.4.1” directory exists, then the
contents of this directory are copied on top of the newly created DirectFB-1.4.1 source tree.

NOTE: The private directory is always provided to customers who have signed an SLA to be
able to receive Broadcom reference software. If this directory does not exist, then pre-built
shared libraries will still be provided to be placed on the target system. These pre-built
libraries will reside in the “broadcom_files/precompiled” directory.

Before DirectFB source code can be built, the freetype library needs to be built, then jpeg and zlib and
finally libpng. The DirectFB source code will then be configured to auto-generate the Makefile(s) and
finally the DirectFB source code will be built and installed. The final stage will produce a tarball that can
then be copied to the target for extracting and running. This tarball will look similar to the example below:

e.g. DirectFB-1.4.1_debug_build.97405C0.tgz

NOTE: In non-DEBUG (RELEASE) mode, the word “debug” will be replaced with “release”.

4.1.5 Step 4B: Building DirectFB in Multi-Application Mode

Multi-application mode will allow multiple applications/processes to use the DirectFB API concurrently.
The build process is the same as for Step 4A above, except that the additional make build option called
“DIRECTFB_MULTI=y” needs to be set:

Example:

cd AppLibs/opensource/directfb/build/1.4.1

make DIRECTFB_MULTI=y && make DIRECTFB_MULTI=y tarball

IMPORTANT NOTE: DirectFB running in multi-application mode requires the
Nexus/magnum drivers to be built and run in kernel mode (proxy mode). This restriction
will be removed in a future release of DirectFB where multi-process user-space Nexus is
also supported.

The steps the build process takes are slightly different, in that the fusion IPC kernel module (linux-fusion)
will be built prior to freetype (and the other libraries) being built. The last stage of the build process is also
different in that the SaWMan window manager will be built. SaWMan allow finer control over the Con

fid
en

tia
l to

 B
ro

ad
co

m C
or

po
ra

tio
n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 14 of 50 Company Confidential

placement and lifecycle of multiple applications on the screen. It replaces the default window manager
that comes with DirectFB.

The resulting tarball will be named slightly differently to the one produced in step 4A above. The word
“multi” will appear immediately after the “DirectFB-1.4.1”

e.g. DirectFB-1.4.1_multi_debug_build.97405C0.tgz

This tarball can be copied to the target platform in the same way as for step 4A above.

4.1.6 Building DirectFB Tests

DirectFB test applications that reside in the DirectFB-1.4.1/tests directory are not built by default now. To
enable these unit tests to be built, please ensure that the make build option “BUILD_TESTS” is set to “y”.

e.g. make BUILD_TESTS=y

4.1.7 Building DirectFB Examples

DirectFB examples are separate test/demo applications that can be built and run on the Broadcom
reference platforms. To enable these additional test/demo applications to be built, please ensure that the
make build option “BUILD_EXAMPLES” is set to “y”.

e.g. make BUILD_EXAMPLES=y

4.1.8 Building FusionDale

FusionDale is an IPC (inter-process communication) software module that has dependencies on fusion
(linux-fusion). It provides a more abstracted way to perform IPC than fusion itself. FusionDale can be
used independently from DirectFB and provides distributed event notification, RPC (remote procedure
call) and message distribution.

To build FusionDale, the make build option “BUILD_FUSIONDALE” must be set to “y”:

e.g. make BUILD_FUSIONDALE=y

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 15 of 50 Company Confidential

4.1.9 Building ++DFB

++DFB (a.k.a. ppDFB), is a library that C++ application can call into to make DirectFB API calls (effectively
a set of C++ bindings). ++DFB is a more advanced version of DFB++, and is incompatible in the way
applications can call methods/functions.

To build ++DFB-1.4.1, please ensure that the make build option “BUILD_PPDFB” is set to “y”.

e.g. make BUILD_PPDFB=y

NOTE: ++DFB requires the standard C++ libraries be present on the target platform.

4.1.10 Building DiVine

DiVine (DirectFB Virtual input extension) is a library that simulates the behavior of a real input device to
control DirectFB applications. DiVine has a client/server model to allow input commands to be dispatched
to the server over a socket connection

To build DiVine, please ensure that the make build option “BUILD_DIVINE” is set to “y”.

e.g. make BUILD_DIVINE=y

4.1.11 Building Insignia Test Harness

The Insignia test harness is only available to certain customers who have signed an SLA with YouView.
This test harness will check that the Broadcom DirectFB graphics driver matches the software fallback
implementation for over 600 test cases. If the Insignia tarball is present, then this package can be built by
setting the make build option “BUILD_INSIGNIA” to “y”.

e.g. make BUILD_INSIGNIA=y

4.1.12 Build Tacho Test Harness

The Tacho test harness is only available to certain customers who have signed an SLA with YouView.
This test harness will check the graphics performance of the Broadcom DirectFB graphics driver. If the
Tacho tarball is present, then this package can be built by setting the make build option “BUILD_TACHO”
to “y”.

e.g. make BUILD_TACHO=y

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 16 of 50 Company Confidential

4.1.13 Building External Applications

Third party applications and/or external applications/tests can be built with the correct DirectFB compiler
flags by using the “directfb-config” utility. The example below shows how a test application called
“my_test.c” can be built that reads images from the standard “/usr/local/share/directfb-1.4.1/images”
directory.

mipsel-linux-uclibc-gcc `./DirectFB-1.4.1/directfb-config –-cflags –-libs` -

DDATADIR=’”/usr/local/share/directfb-1.4.1/images”’ my_test.c –o my_test

4.1.14 Additional Make Targets

The DirectFB build system does allow for partial steps or targets to be chosen. These build targets are
listed below along with a description:

Table 3 – Make Targets

Make Target Description

help List the DirectFB make targets that can be called along with options.

default This is the default make target and will attempt to install all DirectFB software
modules, if they haven‟t already been installed. If a module hasn‟t been compiled,
then it will be compiled first.

release This will create a full release of the DirectFB software including both open source
and Broadcom SLA specific code. The result is a dated tarball.

limited This will create a limited release of the DirectFB software including only the open
source components. The result is a dated tarball.

all This will force every DirectFB software module to be reconfigured, rebuilt and
installed.

tarball This will create a tarball of the target output directory that can then be copied over
to the target platform for unpacking and running.

install This option is the same as the default target option and will only install software
modules that need installing.

compile This will attempt to compile all DirectFB software modules that need compiling. If
a module hasn‟t already been configured, then it will be configured first.

config This will attempt to configure all DirectFB software modules that need configuring.
If a module hasn‟t already been unpacked, then it will be unpacked first.

uninstall This will cause all installed intermediate files to be uninstalled.

uninstall-target This will remove all target output directory installed files.

clean Remove all generated object files, dependencies, binaries and temporary object
directories.

distclean Remove everything including the generated source code. The user will be
prompted first to remove any source code. This target should always be called
prior to installing a new release of DirectFB.

mrproper Remove everything including generated source code. No user prompts will be
displayed. This target should always be called prior to installing a new release of
DirectFB. Con

fid
en

tia
l to

 B
ro

ad
co

m C
or

po
ra

tio
n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 17 of 50 Company Confidential

Make Target Description

precompile-clean This is useful if you want to remove the entire precompiled installation directory.

precompile-distclean This will remove all files and directories under the precompiled directory.

check-tools Do a quick check to make sure you have up-to-date tools to build DirectFB.

check-autogen-tools Do a quick check to make sure you have up-to-date tools to auto generate the
autoconf *.in files needed to build DirectFB.

directfb-defines This will update the graphics and system defines files in the DirectFB-1.4.1 source
tree.

xxx-all Where xxx can be “”, “directfb”, “directfb-examples”, “sawman”, “fusiondale”,
“fusion”, “ppdfb”, “divine”, “insignia”, “tacho”, “freetype”, “jpeg”, “png” and “zlib”.
This will re-build the chosen target software module including re-configuration and
re-compilation if necessary.

xxx-source Like “xxx-all” above, but the source code for the chosen module “xxx” will be
created if not already present.

xxx-config Like “xxx-source” above, but the configuration step will be called.

xxx-compile Like “xxx-source” above, but the compilation step will be called.

xxx-install Like “xxx-source” above, but the installation step will be called.

xxx-uninstall Like “xxx-source” above, but the uninstallation step will be called.

xxx-clean Only clean the required software module specified by “xxx”.

xxx-distclean Perform a complete clean of the chosen software module specified by “xxx” with
user prompt.

xxx-mrproper Perform a complete clean of the chosen software module specified by “xxx”.

yyy-autogen Where “yyy” can be “directfb”, “directfb-examples”, “sawman”, “fusiondale” and
“ppdfb”. This will regenerate the “Makefile.in” and “configure” scripts from the
*.am files. This option is only useful for developers who want to change the way
the chosen software module is built (e.g. build new test application).

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 18 of 50 Company Confidential

4.1.15 Additional Make Flags

The following table lists the complete set of flags that can be passed to the DirectFB build system to
modify the default build behavior. The flags are normally passed on the “make” command line, but can
also be set as environment variables.

e.g. make DIRECTFB_MULTI=y

Table 4 – Make Flags

Make Target Description

DIRECTFB_VERSION The default version of DirectFB can be overridden (e.g.
DIRECTFB_VERSION=1.0.0)

DIRECTFB_APPLIBS Use default build normally pulls in the zlib, freetype, png and jpeg
libraries from the “AppLibs” directory. By setting this flag to “n”, the
older versions of these libraries will be used from the “BSEAV/lib”
directory instead.

DIRECTFB_MULTI The default is to build DirectFB in single application mode. Setting
this flag to “y” will build DirectFB in multi-application mode.

DIRECTFB_ACCEL The default is to build DirectFB with hardware graphics acceleration
support (blitter/M2MC). Setting this flag to “n” will disable all
graphics acceleration and will use the generic DirectFB graphics
primitive functions instead. This flag should be set to “n” for
chipsets that do not have a blitter/M2MC core.

DIRECTFB_SHARED The default is to build the zlib, freetype, png and jpeg utility libraries
as shared libraries that can then be dynamically linked with
DirectFB at run time. Setting this flag to “n” will instead build these
libraries as static (.a) and DirectFB will statically link with them at
compile time. Setting this flag to “n” generally increases code size,
but can be useful if applications use different versions of these
utility libraries.

DIRECTFB_PREFIX The default target prefix is “/usr/local” but this can be overridden
using this flag (e.g. DIRECTFB_PREFIX=/usr). This specifies the
path to the DirectFB installation on the target platform.

DIRECTFB_IR_PROTOCOL The default IR protocol can be overridden using this flag. The IR
protocol should be the name of the NEXUS IR protocol (e.g.
“Generic”, “RemoteA”, and “CirNec”).

DIRECTFB_IR_INPUT The default is to enable the DirectFB IR input if the platform
supports an IR input. However, the user can specify “n” to disable
it.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 19 of 50 Company Confidential

Make Target Description

DIRECTFB_KEY_INPUT The default is to enable the DirectFB front-panel keypad
input if the platform supports a front panel keypad.
However, the user can specify “n” to disable it.

DIRECTFB_SYSTEM The default is always to build the DirectFB Broadcom
system module/lib. However, setting this flag to “n” will
prevent this module from being built.

DIRECTFB_SID The default is to build the DirectFB still image decoder (SID)
image provider module/lib, if the platform supports a SID
hardware decoder. However, the user can specify “n” to
prevent this module from ever being built.

DIRECTFB_SW_DITHERING Enable software dithering (currently only supported with
RGB16 and ARGB4444 formats). When set to “y” advanced
software dithering for RGB16 and ARGB4444 formats will be
enabled. The downside is that this will increase the size of
the data section by at least 64KB.

DIRECTFB_SW_SMOOTH_SCALING Enable software smooth scaling. When set to “y” software
smooth scaling will be enabled and the size of the text
section will increase by at least 100K bytes.

DIRECTFB_GFX_PACKET_BUFFER The default is to enable the packet buffer interface in the
Broadcom DirectFB graphics driver. Setting this to “n” will
cause the legacy graphics driver to be used that will have
lower graphics performance.

DIRECTFB_GFX_TRAPEZOID_SUPPORT The default is to enable drawing of trapezoids in the
graphics driver if the packet buffer interface is enabled too.
Setting this option to “n” will result in trapezoids being drawn
using only software.

DIRECTFB_GFX_SOFT_MATRIX_SUPPORT The default is to enable support for the SetMatrix() function
in our graphics driver using the PX3D hardware to perform
rotation and shearing. If the PX3D hardware is not present
or this option is set to “n”, then a much limited feature set for
SetMatrix() will be available.

GL_SUPPORT This flag controls whether the nexus/magnum drivers and
DirectFB are built with support for the PX3D 3D graphics
core. By default the drivers and DirectFB are not built with
support for 3D graphics. To enable support for “DrawLine()”,
“TextureTriangles()”, “FillTriangle()” and “FillTriangles()”
please set this flag to “y” when building nexus and also when
building DirectFB. This flag does not have any effect for the
BCM935230 and BCM935125 platforms.

DIRECTFB_GLES_SUPPORT The default is not to build DirectFB with OpenGL ES 1.0 and
EGL support. However, setting both this flag and the
“GL_SUPPORT” flag to “y” will build DirectFB with 3D
OpenGL ES 1.0 support. This support is only available on
devices that have a PX3D graphics core (not available on a
BCM935230 device). The nexus/magnum drivers must
have also been built with both these flags set to “y” in order
to have OpenGL ES 1.0 support. Con

fid
en

tia
l to

 B
ro

ad
co

m C
or

po
ra

tio
n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 20 of 50 Company Confidential

Make Target Description

USE_SHIM The default is not to use the “shim” layer that translates
Nexus calls to “shim_NEXUS” calls. Setting this option to
“y” will result in the “shim” Nexus code being built.

BUILD_TESTS The default is not to build the DirectFB unit test applications
that are located in the “tests” directory. Setting this flag to
“y” will instead build and install the additional DirectFB
tests.

BUILD_EXAMPLES The default is not to build the additional DirectFB examples.
Setting this flag to “y” will instead build and install the
additional DirectFB examples.

BUILD_FUSIONDALE The default is not to build the FusionDale library. Setting
this flag to “y” will build and install the FusionDale library
components and examples.

BUILD_SAWMAN The default is to build SaWMan only when
“DIRECTFB_MULTI=y”. Setting this flag to “n” will disable
building SaWMan and will ensure that the default window
manager of DirectFB is used. This option is only meaningful
when building in multi-application mode.

BUILD_PPDFB The default is not to build the ++DFB library. Setting this
flag to “y” will build and install the library.

BUILD_DIVINE The default is not to build the DiVine library. Setting this flag
to “y” will build and install the library.

BUILD_FUSION The default is to build the “linux-fusion” kernel module only
when DirectFB is built in multi-application mode. Setting this
flag to “n” will prevent this module from being built and
installed and if used in conjunction with
“DIRECTFB_MULTI=y”, the experimental multi-application
mode of DirectFB will be built instead.

BUILD_VOODOO The default is not to build the voodoo library that is part of
DirectFB. Setting this flag to „y‟ will build and install the
library.

BUILD_INSIGNIA The default is not to build the Insignia library. Setting this
flag to “y” will build and install the library if the source tarball
is present.

BUILD_TACHO The default is not to build the Tacho library. Setting this flag
to “y” will build and install the library if the source tarball is
present.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 21 of 50 Company Confidential

Make Target Description

MODE The default is to build NEXUS for user-space. Setting this
option to “proxy” will result in the NEXUS drivers being
compiled for kernel-space.

SMP Setting this option to “y” will build “linux-fusion” in SMP
mode. Setting this flag to “n” will build “linux-fusion” in UP
mode.

ARCH The default is to build DirectFB and the associated
libraries in little endian mode. Setting this flag to “mips-
uclibc” will result in DirectFB and its libraries being built in
big endian mode instead. It should be noted that Nexus
and magnum must be built in big endian mode prior to
rebuilding DirectFB.

DEBUG The default is to build DirectFB in debugging mode.
However, setting this flag to “n” will build DirectFB in
release mode and no debugging information will be
available. Setting this option to “n” will also improve
graphics performance.

VERBOSE The default is to build DirectFB with minimal information.
Setting this flag to “y” will increase the amount of
information available during the building stages.

TRACE The default is to build DirectFB without any tracing
information. Setting this flag to “y” will allow tracing
information to be enabled.

DIRECTFB_EXAMPLES_VERSION The default is to build the DirectFB examples 1.2.1
software package. If a different version is available, then
seeing this flag will result in that version being build
instead (e.g. DIRECTFB_EXAMPLES_VERSION=1.2.3).
The alternative software tarball should be placed in the
“directfb_tarballs” directory before building the software.

FUSION_VERSION The default is to build linux-fusion version 8.1.1. If an
alternative tarball version is available to be built, it should
first be placed in the “directfb_tarballs” directory and this
flag should be set accordingly (e.g.
FUSION_VERSION=8.1.2).

SAWMAN_VERSION The default is to build SaWMan version 1.4.1, but if a
different version of SaWMan is available, then setting this
flag will result in that version being built instead (e.g.
SAWMAN_VERSION=1.4.2). The alternative software
tarball should be placed in the “directfb_tarballs” directory
before building the software.

FUSIONDALE_VERSION The default is to build FusionDale version 0.8.1. Setting
this flag will allow an alternative version of FusionDale to
be built (e.g. FUSIONDALE_VERSION=0.8.2). The
alternative software tarball should be placed in the
“directfb_tarballs” directory before building the software.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 22 of 50 Company Confidential

Make Target Description

PPDFB_VERSION The default is to build ++DFB version 1.4.1. However, this
behavior can be overridden by specifying an alternative
version (e.g. PPDFB_VERSION=1.4.0). The alternative
software tarball should be placed in the “directfb_tarballs”
directory before building the software.

DIVINE_VERSION The default is to build DiVine version 0.4.0. However, this
behavior can be overridden by specifying an alternative
version (e.g. DIVINE_VERSION=0.4.1). The alternative
software tarball should be placed in the “directfb_tarballs”
directory before building the software.

INSIGNIA_VERSION The default is to build Insignia version 0.1.1. However,
this behavior can be overridden by specifying an
alternative version (e.g. INSIGNIA_VERSION=0.1.2). The
alternative software tarball should be placed in the
“directfb_tarballs” directory before building the software.

TACHO_VERSION The default is to build Insignia version 0.1.1. However,
this behavior can be overridden by specifying an
alternative version (e.g. TACHO_VERSION=0.1.2). The
alternative software tarball should be placed in the
“directfb_tarballs” directory before building the software.

DFB_FREETYPE_VERSION The default is to build Freetype version 2.3.7 from
“AppLibs/opensource/freetype” or version 2.1.5 from
“BSEAV/lib/freetype-2.1.5”. This behavior can be
overridden by setting this flag appropriately.

DFB_JPEG_VERSION The default is to build JPEG version “6b” from
“AppLibs/opensource/jpeg” or “BSEAV/lib/jpeg-6b”. This
behavior can be overridden by setting this flag
appropriately.

DFB_PNG_VERSION The default is to build PNG version 1.2.29 from
“AppLibs/opensource/libpng” or version 1.2.8 from
“BSEAV/lib/libpng”. This behavior can be overridden by
setting this flag appropriately.

DFB_ZLIB_VERSION The default is to build zlib version 1.2.3 from
“AppLibs/opensource/zlib” or version 1.1.3 from
“BSEAV/lib/zlib”. This behavior can be overridden by
setting this flag appropriately.

APPLIBS_INSTALL_PREFIX The default is to install all files relative to “/usr/local” on the
target platform. This option can be overridden to place the
target files in a different directory structure.

APPLIBS_TARGET_TOP This specifies the final output directory on the host build
machine in which the DirectFB binaries and libraries are to
be installed prior to being packed ready for transfer to the
target platform. The default is “AppLibs/target”, but this
can be overridden

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 23 of 50 Company Confidential

5 RUNNING DIRECTFB ON THE TARGET PLATFORM

5.1.1 Single Application Mode

Once you have generated the tarball in Step4A or Step4B, you need to copy it to the target platform. You
can use tftp to do this. For example, you need to ensure your host machine is running a tftp server and
then you can copy the tarball to the tftp root dir (e.g. /tftpboot). For more information about setting up a
tftp server on you host machine, please refer to the “BroadcomReferencePlatformSetup.pdf” guide that is
part of the standard reference software release.

On the target platform, please ensure that you boot it with the same kernel version and setup (e.g. SMP)
that you built DirectFB and the Nexus/magnum drivers with. Once you have booted to the login prompt,
and logged in (as root), you need to enter in these commands to create a tmpfs filesystem at /dev/shm:

mkdir /dev/shm

mount –t tmpfs none /dev/shm –o size=20m

Next you need to copy the DirectFB tarball to /dev/shm using tftp and unpack it to /usr/local. Please follow
these steps:

cd /dev/shm

tftp –g –r DirectFB-1.4.1_xxxxxx.tgz <name of host machine or IP address>

cd /

tar xzvf /dev/shm/DirectFB-1.4.1_xxxxxx.tgz

This will create a new “/usr/local” tree which is where the DirectFB libraries and unit tests will reside.

NOTE: If you have permission problems writing to the root file system, then it may be
mounted read-only (RO). To change the permissions to read-write (RW), you can enter in
the following command:

mount –o remount,rw /

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 24 of 50 Company Confidential

If your target platform has a HDD connected, you can choose to install the DirectFB libraries on the HDD
instead of the root files system. This is necessary if your root files system is initrd or you do not have
sufficient capacity on the flash device. To do this, you need to ensure your HDD partition is mounted first
and that you created a symbolic link from /usr on the root files-system to /usr on the HDD partition.

Example:

mount /dev/sda1 /mnt/hd

cd /

ln –s /mnt/hd/usr

cd /mnt/hd

tar xzvf /dev/shm/ DirectFB-1.4.1_xxxxxx.tgz

Once you have untared DirectFB to /usr/local, you are now ready to run the installation script.

cd /usr/local/bin/directfb/1.4

./rundfb.sh install

You are now ready to run any DirectFB application from this directory. For example, to run the Denis‟s
(DOK‟s) benchmarking unit test, please enter the following command:

./rundfb.sh df_dok

NOTE: On the DTV platforms such as the BCM93556 and BCM935230, the graphics layer
size may need to be different to that of the display resolution. This restriction depends
entirely on the bvn config setup (RTS settings). In some cases, the maximum size of the
graphics layer is 1366x1080 on the BCM93556 and 1366x768 on the BCM935230. You will
need to use the “mode=HxW” DirectFB run-time option to be able to run applications
succesfully. For example, on the BCM935230 you would need to run “df_dok” as follows:

./rundfb.sh df_dok --dfb:mode=1366x768

On non-DTV products, you can also specify the output resolution of the connected display (the default is
720p on most chipsets). For example, to run with a 1080i output resolution, you can enter the following
command:

./rundfb.sh df_dok -–dfb:res=1080i

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 25 of 50 Company Confidential

The default graphics heap memory size is 16MB. For some resolutions and applications, this will need to
be increased. For example, to run the “Penguins” test app (df_andi) at 1080i resolution, it will be
necessary to increase the graphics heap size from 16MB to 33MB. To do this you need to set an
environment variable prior to running any DirectFB application.

export gfx_heap_size=34603008

./rundfb.sh df_andi --dfb:res=1080i

The value after the equals sign (=) on the first line is the requested heap size in bytes. This cannot be
larger than the total size of ram minus the size of the Linux kernel top of ram and Nexus/magnum drivers
ram footprint. This graphics heap is also known as VIDEO MEMORY in DirectFB terminology and is not
SYSTEM MEMORY (a.k.a Linux memory).

On some platforms, the memory architecture is unknown until after the drivers have been loaded and
initialized. For example, on the BCM97405 platform the memory architecture can be UMA or non-UMA
(unified or non-unified). Because of this, there can be a lag between issuing the “rundfb.sh” command
and the application appearing on the display. This is because the drivers have to be loaded, then
unloaded and loaded again with the correct memory configuration.

To help reduce this lag time, you can set an environment variable to tell DirectFB exactly what architecture
the memory is. For example, if the memory is unified, then set please enter the following command prior
to running any DirectFB application:

export mem_non_uma=n

On the other hand, if the memory architecture is non-unified, then you can set the environment variable as
follows:

export mem_non_uma=y

If you are unsure what the memory architecture is set to, then please refer to the CFE boot information
and look for the line named “Memory Config:”. For example, if this line is set to “64-bit UMA”, then this
indicates that the memory architecture is unified and you will need to set “mem_non_uma=n”.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 26 of 50 Company Confidential

5.1.2 Multi-Application Mode

With DirectFB running in multi-application mode, more than one application can access the DirectFB API‟s
at the same time and from different processes. The same steps can be taken as for single-application
mode when it comes to running the very first application. However, for any subsequent application, the
“rundfb.sh” script needs to accept the “join” option. An example of running both df_andi (Penguins) and
df_window in multi-application mode using different processes is given below:

cd /usr/local/bin/directfb/1.4

export gfx_heap_size=36000000

./rundfb.sh df_window &

./rundfb.sh join df_andi --dfb:force-windowed

You should now be able to see the DirectFB windows on top of the Penguins. If you have a USB
keyboard and mouse connected to the platform, you should be able to move the windows around the
screen. Pressing Q or ESC on the USB keyboard will quit the application(s).

You can also specify the size of the graphics surface/layer independent of the output resolution of the
display. For example, if you would like to have a 640x480 graphics layer with a 1280x720p output
resolution, you can use the “mode” DirectFB option. An example of this is given below:

./rundfb.sh join df_andi –-dfb:mode=640x480

The graphics will be stretched horizontally and vertically to fill the display window.

NOTE: The first DirectFB application that runs is known as the “master” and subsequent
DirectFB applications are known as “slaves”. The “master” application is normally a module
that should not under normal circumstances be terminated. Internally within DirectFB, it will
manage the Nexus display settings and will be responsible for creating and destroying all
Nexus surfaces and memory. If this application is terminated before any of the client
applications are closed, then the system will be in an unrecoverable state.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 27 of 50 Company Confidential

5.1.3 Running Texture Mapped Graphics Applications

DirectFB can now be built with hardware support for the “TextureTriangles()”, “FillTriangle()” and
“FillTriangles()” graphics functions. This support is only available for Broadcom devices that have the
PX3D 3D graphics core (e.g. BCM93556, BCM97413, BCM97420). Both Nexus and DirectFB must be
built with the “GL_SUPPORT=y” environment flag set.

To test “TextureTriangles()”, the user can run the “df_texture” unit test.

e.g. ./rundfb.sh df_texture

5.1.4 Running OpenGL ES 1.0 Graphics Applications

DirectFB can now be built with support for OpenGL ES 1.0 and EGL. Both Nexus and DirectFB must be
built with the following two environment flags set:

“GL_SUPPORT=y”

“DIRECTFB_GLES_SUPPORT=y”

To test the OpenGL ES 1.0 and EGL support within DirectFB, you may run any of the following test
applications:

1. dfbtest_egl_only

2. dfbtest_egl_pixmap (use mouse to XYZ rotation)

3. dfbtest_gl (use mouse to change XYZ rotation)

e.g. ./rundfb.sh dfbtest_gl

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 28 of 50 Company Confidential

5.1.5 Run-time Environment Variables

The table below lists the environment variables that affect the run-time behavior of DirectFB. These
environment variables can be set using the bash “export” command as follows:

e.g. export mem_non_uma=n

Table 5 – Run-time environment variables

Make Target Description

mem_non_uma Setting to “n” will force the memory architecture to UMA, whereas setting to
“y” will force the memory architecture to non-UMA. When this environment
variable is not set (or is not “y” or “n”), then when DirectFB starts it will
interrogate the memory architecture. This can introduce an unwanted delay
at startup. By setting this envar appropriately, this delay can be eliminated
all together.

gfx_heap_size This overrides the default graphics heap memory size (in bytes) of 16MB.
For example, to increase the graphics heap size to 32MB, ensure that this
envar is set to “33554432” (size in bytes).

dfb_slave This determines whether the DirectFB application should “join” Nexus (set to
“y”) or initialize Nexus (set to “n”). This option can be set to “y” if another
non-DirectFB application is the primary application in the system and has
already initialized Nexus with “NEXUS_Platform_Init()”. After initializing or
joining Nexus, DirectFB can decide whether to open the display, graphics
and picture decoder Nexus handles itself or use the handles provided to it in
the DFB_Platform_Init() call.

sw_picture_decode This envar only affects platforms that have a still image decoder (SID).
Normally, JPEG, GIF and PNG images are rendered using the SID (if
available). However, setting this envar to any value will result in the generic
software DirectFB picture decoding functions being used instead.

dfb_no_platform_init This “forces” the DirectFB application to behave like a pure “slave”
application joining Nexus and using the Nexus handles already provided by
another “master” DirectFB application.

panel_type This envar is only available on DTV platforms (e.g. BCM935230,
BCM935125 and BCM93556). This indicates the panel type and the
following options are available:

1. “JEIDA”

2. “CMO”

3. “AUO”

4. “B552” (Note: use this option for LVDS to DVI board)

5. “OPENLDI” (Note: only available on BCM935230 / BCM935125
platforms)

bvn_usage This envar is only used on DTV platforms such as the BCM93556 and the
BCM935230. It is necessary to set this envar to the correct “configXX”
value. For example, on the BCM935230, this is typically set to “config200”.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 29 of 50 Company Confidential

Make Target Description

pixel_swap This envar is only available on DTV platforms (e.g. BCM935230,
BCM935251 and BCM93556) and when “panel_type” is set to “B552”. If this
envar is set to “yes”, then the pixel components are swapped.

output_type This envar is only available on DTV platforms (e.g. BCM935230,
BCM935251 and BCM93556). Setting this envar to “component”, will result
in the primary display resolution taking the value from the DirectFB “res”
option, rather than defaulting to the native resolution of the panel. This
option is only useful if a panel is not connected and the component output is
used instead.

hdsd_mode Set the HD/SD display mode. If this envar is set to “0”, then the
composite/CVBS output is connected to the primary display 0 output. In this
configuration, only SD display output resolutions are supported on both
primary and secondary display outputs (e.g. “res=576i”). If this envar is not
set or is a value other than “0”, then the composite/CVBS output is
connected to the secondary display 1 output and the primary display output
can be configured to be either HD or SD.

enable_rfm This envar is only available on platforms that have an RFM output (e.g.
BCM97325). The RFM output is connected to the same display output as
the composite/CVBS output and is dictated by the “hdsd_mode” envar.
Setting this envar to “y” will enable the RFM output. Setting this envar to any
other value will disable the RFM output. The same restrictions for display
output size apply as for the “hdsd_mode” envar above.

DFBARGS This is the standard DirectFB arguments envar that can be used to specify
the DirectFB run-time options (e.g. export DFBARGS=”res=1080i”).

5.1.6 Running DirectFB Examples

DirectFB examples are additional example applications and tests that are built when the
“BUILD_EXAMPLES=y” option is set. To test any of these additional example applications, please follow
the example steps below:

cd /usr/local/bin/directfb-examples/1.2

./rundfb.sh df_matrix

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 30 of 50 Company Confidential

5.1.7 Running FusionDale

As previously mentioned, FusionDale provides an abstracted IPC mechanism for applications to
communicate with each other when in different processes. There are a few unit test applications that get
built when the make option “BUILD_FUSIONDALE=y” is set. These are:

1. simple: very simple application to test the basic FusionDale interface functions correctly.

2. fdmaster: simple application that initializes and creates a FusionDale instance and then pauses.

3. data_test: send a message and receive a notification for it.

4. t2_sender: sends a simple event using the messenger interface.

5. t2_receiver: listens for an event using the messenger interface.

The “t2_sender” and “t2_receiver” are the best applications to test IPC between different processes.

Example:

cd /usr/local/bin/fusiondale/0.8

./runfus.sh t2_receiver &

./runfus.sh join t2_sender

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 31 of 50 Company Confidential

5.1.8 Running SaWMan (multi-application mode)

SaWMan is the Shared Application and Window Manager that overrides the “default” window manager of
DirectFB. It can act as an application lifecycle manager, deciding what application/processes can be
spawned or terminated and which application(s) receive input events. Many multi-application
environments use SaWMan to help fulfill their requirements for displaying and managing multiple
applications simultaneously.

If DirectFB has been built in multi-application mode, then the SaWMan becomes the default window
manager. There are two specific applications that can be used to test SaWMan functionality. They are
“testman” and “testrun”. “testman” is the main application manager and is used to register what
applications can be spawned or terminated. It also has full control over the layout of multiple applications
on the display. “testrun” on the other-hand, is used to signal what pre-registered application can be run.
“testrun” can be called from different processes multiple times, thus helping to simulate a real-world multi-
process / multi-application environment. To test SaWMan please follow the steps below:

cd /usr/local/bin/sawman/1.4

./runsaw.sh testman &

./runsaw.sh join testrun Penguins

./runsaw.sh join testrun Penguins2

./runsaw.sh join testrun Penguins3

./runsaw.sh join testrun Penguins4

On the screen you should see 4 windows each with their own df_andi (Penguins) moving around. You

can move the mouse over any of the windows and press <Q> to quit the application. Each of the
applications is running in a separate process.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 32 of 50 Company Confidential

5.1.9 Running ++DFB

++DFB requires that the C++ standard libraries are installed on the target platform. These libraries are
usually located in the “/lib” directory and are called “libstdc++.so”. If the libraries are not present, then you
will need to manually copy them from your host/build cross-compilation toolchains directory as follows:

On host/build machine:

cp /opt/toolchains/crosstools_hf-linux-2.6.18.0_gcc-4.2-11ts_uclibc-nptl-

0.9.29_20070423-20090508/mipsel-linux-uclibc/lib/libstdc++.so.6.0.9 /tftpboot

On target platform:

cd /usr/local/lib

tftp –g –r libstdc++.so.6.0.9 <name of host/build machine>

ln –s libstdc++.so.6.0.9 libstdc++.so.6

ln –s libstdc++.so.6.0.9 libstdc++.so

At this point you should be able to run any of the ++DFB test applications. For example, you can run the
“dfbshow” test application as follows:

cd /usr/local/bin/++dfb/1.4

./runppd.sh dfbshow /usr/local/share/directfb-1.4.1/images/biglogo.png

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 33 of 50 Company Confidential

6 ADDITIONAL INFORMATION

6.1 BUILD SYSTEM INFORMATION

The build system for DirectFB and its associated software components all reside in a top-level Makefile
and make include file (directfb_common.inc) in the “AppLibs/opensource/directfb/build/1.4.1” directory.
The make process is broken down into different steps, each of which depends on a previous step. The
following diagram shows how the user can enter any step directly, but the make system knows whether
the previous step(s) have already been completed (dependencies).

make all

Make Version

OK?

S/W

unpacked?

 Y

S/W

configured?

Y

S/W compiled?

Y

S/W installed?

Y

make xxx-source

make xxx-config

make xxx-compile

make xxx-install

make check-tools Abort with error N

Unpack software

 N

Configure software

 N

Compile software

 N

Install software

 N

Make complete

Y

S/W

Compiled?

Y

S/W

configured?

Y

N

S/W

unpacked?

N

Y

Make Version

OK?

Y

N

N

 Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 34 of 50 Company Confidential

It is worth noting that the build system does not track modified source code files between the stages in
green. For example, if the user built and installed DirectFB by typing “make” and then modified a
DirectFB-1.4.1 source code file, the build system does NOT know that a source code file was modified if
the user were to type “make” again. Instead, the user can type “make directfb-compile” and this will rebuild
only the source files needed within DirectFB. The user can then type “make” and the build system is
intelligent enough to know that the directfb installation phase needs to be completed next.

This approach saves time during the build process when making lots of source code modifications. If the
makefile had to call each software modules “compile” stage, then it would also force an installation which
would all consume valuable time. The recommended approach is to make source code modifications,
type “make xxx-compile” (where xxx is the software module like “directfb”) and then type “make” for the
build system to complete any further necessary steps (e.g. installation). The same can be said if the user
wants to reconfigure DirectFB or a software module. The user should type “make xxx-config” first to re-
configure the software module, and then type “make”. Usually this will involve the source code being re-
compiled and re-installed.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 35 of 50 Company Confidential

6.2 RUNNING MULTIPLE APPLICATIONS IN SEPARATE PROCESSES

DirectFB can be built in what is known as “multi-application” mode. This mode allows multiple DirectFB
and non-DirectFB applications to run in separate processes simultaneously. Currently, DirectFB multi-
process support is only available when the Nexus drivers are built for “proxy” mode (kernel mode). This
limitation will be removed in the next release to allow user-space multi-process Nexus drivers to run.

The first DirectFB application to run is normally the “master” application. This application needs to always
remain running as it is responsible for receiving remote procedure calls (RPC) from client DirectFB
applications. This “master” DirectFB application is responsible for creating and destroying Nexus
surfaces, allocating and freeing Nexus memory and handling Nexus display settings (e.g. setting the
framebuffer). When a client DirectFB application tries to create a surface or set the graphics framebuffer,
it will issue a RPC to this “master” DirectFB application to service the request.

If the master application is terminated either intentionally or unintentionally, then the system will be in an
unstable state as client applications won‟t be able to have their requests serviced. It is recommended that
the master DirectFB application is also the “application manager” in the complete multi-process system.

6.2.1 Running non-DirectFB and DirectFB Applications

There are some situations where the system has non-DirectFB applications and DirectFB applications. In
this scenario, the non-DirectFB application might already be initializing Nexus and opening Nexus
modules that the DirectFB applications rely on (e.g. Nexus display, graphics2d, graphics3d).

To allow for this usage scenario, there is a new “dfb_platform.h” file that contains a light-weight API to
allow non-DirectFB and DirectFB applications to use. The non-DirectFB application can continue to
initialize Nexus and open up the Nexus modules it needs to. Then, it can inform the Broadcom DirectFB
platform layer code what handles it has opened through the “DFB_Platform_Init()” call. This call accepts a
pointer to a structure that tells the code whether to initialize or join Nexus and what (if any) handles are
available. It places the handles in System V shared memory to allow other processes to access them.

The “master” and “slave” DirectFB applications should also call this function to ensure that the handles are
known to them (read from the System V shared memory). To help initialize this structure, the applications
can call “DFB_Platform_GetDefaultSettings()” to obtain default platform settings, modify them and then
pass the settings to “DFB_Platform_Init()”.

To allow this scenario to work, the platform init code (DirectFB-1.4.1/libinit/platform_init.c) needs to be
modified to prevent the constructor and destructor from being called. The master application can then link
with the modified platform code (libinit.so) and should call the “DFB_Platform_Init()” with appropriate
arguments. The DirectFB applications should also link with the platform init code (libinit.so) and should
call this function right at the beginning of the main function. If the master application opens up any display
handles, then it has the responsibility for connecting any outputs to the display such as HDMI and
component. The Broadcom DirectFB platform code will then not attempt to initialize the display or connect
any outputs to the display.

Each application in the system should call “DFB_Platform_Uninit()” before it terminates. This ensures that
the system is in a consistent state.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 36 of 50 Company Confidential

6.3 CONFIGURING THE KERNEL TO ENABLE USB INPUT DEVICES

Some of the pre-built Linux kernels do not have USB HID (human input device) support enabled by default
and the USB connected keyboard/mouse will not function. To rectify this problem, you need to recompile
the linux kernel with USB HID support enabled. You will need to have the reference software Linux kernel
and root file system source code untared on your host/build machine. Please refer to the
“BroadcomReferencePlatformSetup.pdf” guide for more information about unpacking these sources.

6.3.1 Broadcom 2.6.12 and 2.6.18 Kernels

Once you have both root file system and kernel unpacked, you will need to manually configure the kernel
to enable additional options for the USB keyboard and mouse. First you will need to choose and copy the
required kernel configuration file. These can be found in the following subdirectory from the Linux root:

“arch/mips/configs”

There are many different configurations for each platform, with options for SMP/non-SMP, BIG (be) / little
endian, type of flash (e.g. NAND) and type of root filesystem (e.g. initrd). For example, to configure the
kernel for an SMP-enabled BCM97405B0 platform, you will need to copy the “bcm97405b0-
smp_defconfig” to .config.

Example:

cd $LINUX

cp arch/mips/configs/bcm97405b0-smp_defconfig .config

Next, you will need to configure the kernel with additional options. To do these enter the following
commands from the Linux kernel root directory:

make oldconfig

make menuconfig

You will need to select the “Device Drivers” option and then “Input Device Support”. Please press <Y>

to choose “Generic input layer (needed for keyboard, mouse, …)”. Next navigate to the “Event

interface (NEW)” option and press <Y> to select it.

Exit this menu and then within the “Device Drivers” menu choose “Character devices”. Press <Y> to

select “Virtual terminal” and then exit this menu.

Still within the “Device Drivers” menu, navigate to “USB support” and press <ENTER>. Then within the

“USB support” menu, navigate to the option “USB Human Interface Device (full HID) support” and

press <Y>. Finally exit all menus and choose “YES” to save your new kernel configuration.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 37 of 50 Company Confidential

Once you have created your new kernel configuration, you will need to overwrite the original one. Please
enter the following commands from the Linux source root directory (i.e. $LINUX):

chmod u+w arch/mips/config/bcm97405b0-smp_defconfig

cp .config arch/mips/config/bcm97405b0-smp_defconfig

Where: “bcm97405b0-smp_defconfig” needs to be substituted with the name of your preferred
configuration file.

To rebuild just the kernel you will need to enter your root file system source directory and issue the
following command:

make –f build.mk vmlinuz-7405b0-smp TFTPDIR=/tftpboot

Where:

“7405b0-smp” needs to be substituted for your chip and kernel configuration.

“TFTPDIR” points to place on host/build machine where the newly generated kernel will be located.

At this point, you can then re-flash the kernel on to your target platform and USB keyboard and mouse
should function (please refer to the “BroadcomReferencePlatformSetup.pdf” guide for more information on
how flash a kernel). To test the keyboard and mouse, you can run the “df_input” test application and you
should immediately see what key presses or mouse movements/clicks are captured and displayed.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 38 of 50 Company Confidential

6.3.2 Broadcom 2.6.31 Kernels

The Linux kernel build process for 2.6.31 kernels has been overhauled and simplified compared to
previous Linux kernel versions. To configure the kernel with additional options for USB, you will need to
enter the following command from the root file system source directory:

make defaults-XXXXYY

Where:

XXXX is the chip number (e.g. 7420)

YY is the chip revision (e.g. b0)

Next type:

make menuconfig-linux

You will need to navigate to the “Device Drivers” option and press <ENTER>. Then you will need to

navigate to the “Input device support” option and press <ENTER>. Within this sub-menu you will need

to press <Y> for “Generic input layer (needed for keyboard, mouse, …)”. Next navigate down to the

“Event interface (NEW)” option and press <Y> to enable it. Next navigate down to the “Hardware I/O

ports” line and press <ENTER>. Ensure all options in this sub-menu are NOT selected. If any are, then

please navigate to the option and press <N> to deselect it. Exit this menu and the “Input device support”
menu.

Within the “Device Drivers” menu, navigate down to the “Character devices” option and press

<ENTER>. Next press <Y> at the top of this sub-menu to enable the “Virtual terminal”. Exit this menu.

Within the “Device Drivers” menu, please ensure that the “HID Devices” and “USB Support” options

have both been selected (they should have an asterisk by them). Finally exit all menus selecting “YES” to
save your new kernel configuration.

Finally type:

make kernel

To rebuild the kernel with USB HID and input event interface support.

Once the new kernel has been created (in “images” directory), you can re-flash the target platform with it
(please refer to the “BroadcomReferencePlatformSetup.pdf” guide for more information on how to do this).

To test the keyboard and mouse, you can run the “df_input” test application and you should immediately
see what key presses or mouse movements/clicks are captured and displayed.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 39 of 50 Company Confidential

6.4 MAKING A LIMITED DIRECTFB RELEASE

If the user has a DirectFB-1.4.1 Phase 3.0 full release from Broadcom, then a limited release can be
made that doesn‟t have any Broadcom specific SLA source code. This limited release can be useful to
provide to customers who have not signed a Broadcom SLA, but who would still like to test and/or develop
DirectFB applications on suitable Broadcom reference platforms.

A limited release does not contain the “DirectFB/src/broadcom_files/private” directory, but does contain an
alternative directory “DirectFB/src/broadcom_files/precompiled”. This “precompiled” directory contains all
necessary precompiled libraries and kernel modules as well as scripts to be able to run the DirectFB
applications. A subdirectory under “precompiled” is made for each platform, Linux version, architecture
(big or little endian) and debug/release mode. For example, for a BCM97405C0 platform running with a
Linux 2.6.18-7.1 SMP kernel in DEBUG mode with the default little endian tool chain, the subdirectory
would be named:

97405c0_mipsel-uclibc_2.6.18-7.1-smp_debug

Both user-mode and kernel-mode (proxy) Nexus drivers would be placed in this directory, but they would
be all compiled with debugging enabled.

To make a full featured “limited” release, four passes are required in order to have both user-space and
kernel-space nexus drivers in debugging and release modes:

1. Build linux-fusion and nexus with debugging enabled and nexus drivers in kernel mode (proxy).
Then do a “make limited”.

2. Build nexus with debugging enabled but with the drivers in user-space. Then do a “make limited”.

3. Build linux-fusion and nexus with debugging disabled and nexus drivers in kernel mode (proxy).
Then do a “make limited”.

4. Finally build nexus with debugging disabled and nexus drivers in user-space. End with a “make
limited”.

To make a full “limited” release, please follow the four steps that follow on the next page. It is
recommended that the user initiate a “make distclean” first and answer “y” to clean out any previous
“precompiled” directory (and subdirectories).

e.g.

cd /AppLibs/opensource/directfb/build/1.4.1

make DIRECTFB_MULTI=y distclean

After the four steps have been completed, the user can then use the resulting tarball “DirectFB-
1.4.1_Limited_Phase3.0_YYYYMMDD.tgz”, as a finished “limited” release.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 40 of 50 Company Confidential

6.4.1 Step 1 - Making a debug limited release with kernel-space Nexus drivers

cd /AppLibs/opensource/directfb/build/1.4.1

export MODE=proxy

export KERNELMODE=y

export DEBUG=y

make –C /nexus/build clean

make –C /nexus/build

make DIRECTFB_MULTI=y uninstall-target limited

6.4.2 Step 2 - Making a debug limited release with user-space Nexus drivers

cd /AppLibs/opensource/directfb/build/1.4.1

unset MODE

unset KERNELMODE

export DEBUG=y

make –C /nexus/build clean

make –C /nexus/build

make DIRECTFB_MULTI=y uninstall-target limited

6.4.3 Step 3 - Making a non-debug limited release with kernel-space Nexus drivers

cd /AppLibs/opensource/directfb/build/1.4.1

export MODE=proxy

export KERNELMODE=y

export DEBUG=n

make –C /nexus/build clean

make –C /nexus/build

make DIRECTFB_MULTI=y uninstall-target limited

6.4.4 Step 4 - Making a non-debug limited release with user-space Nexus drivers

cd /AppLibs/opensource/directfb/build/1.4.1

unset MODE

unset KERNELMODE

export DEBUG=n

make –C /nexus/build clean

make –C /nexus/build

make DIRECTFB_MULTI=y uninstall-target limited

 Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 41 of 50 Company Confidential

7 CHANGES
This lists the changes to the deliverables since the previous DirectFB-1.4.1 Phase 2.5 release.

7.1 BUILD SYSTEM

The build system now supports building different versions of DirectFB. This is achieved by the user
entering the respective sub-dir under “AppLibs/opensource/directfb/build”. For example, if the user enters
the “AppLibs/opensource/directfb/build/1.4.1” directory, then DirectFB-1.4.1 will be built. However, if other
versions of DirectFB are available, then the user can enter the appropriate sub-dir and build that particular
version.

The build system now supports the “Insignia” and “Tacho” software test harnesses. These software
modules are not provided to customer by default as they require an SLA between the customer and
YouView to obtain the source code tarballs.

Support for the make “job server” to provide much faster building of DirectFB and its associated software
components is now available. To enable multi-build support, the “MULTI_BUILD=y” option can be passed
on the make command line. By default, this pass the “-j4” option to all “make” operation. If the user would
like to override the “-j4” option, then the “MAKE_OPTIONS” envar can be specified instead. For example,
on a 6 core system, the user can specify “MAKE_OPTIONS=-j7” to enable much faster building of
DirectFB software modules.

The build system also now allows for graphics packet buffer support to be built (default) or not. Packet
buffer support provides increased graphics performance with lower CPU loading. With packet buffer
support enabled, Trapezoid drawing can be accelerated.

The IR protocol and keycodes mapping default settings has been updated. The user can now specify a
more human readable name for the protocol and keycodes file. Further information can be found later in
section 7.3.

7.2 GRAPHICS DRIVER

The graphics driver has been overhauled to provide improved performance. This has been achieved by
using the magnum “packet-buffer” APIs. These APIs allow the DirectFB graphics driver to access the
software GRC command ring buffer directly to insert the desired M2MC commands. By accessing the
command buffer directly, the software overhead of performing a blit or fill operation has been significantly
reduced. Packet buffer operation in the graphics driver is now enabled by default as long as the
“magnum/portinginterface/grc/$(BCHP_CHIP)/bm2mc_packet.h” packet buffer API header file is present.

The tolerance of the hardware graphics operations has been tightened to more closely match the software
fallback operations. This was necessary to ensure that all Insignia tests passed.

The driver now supports the SetMatrix() API. This API allows affine matrix operations to be applied during
blitting and drawing operations. If the platform has a 3D PX3D core, then shearing and arbitrary rotation is
enabled. If not, then only translations and mirroring are enabled.

Support for the “FillTrapezoid()” API has now been incorporated into the core DirectFB code and the
graphics driver. The “FillTrapezoid()” call is h/w accelerated by either the PX3D or M2MC cores. If the
PX3D core is present, then the “DrawLine() / DrawLines()” API are also h/w accelerated.

In previous versions of the graphics driver, overlapping blits were not h/w accelerated. This restriction has
been removed for both Blit() and StretchBlit() cases. Con

fid
en

tia
l to

 B
ro

ad
co

m C
or

po
ra

tio
n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 42 of 50 Company Confidential

Dual-source batch blitting has been back-ported from DirectFB-1.4.5 to our graphics driver. Dual-source
batch blitting allows both the source and destination feeders to be used together to blend two source
surfaces in one pass of the M2MC.

Support for YUY2, AYUV and UYVY pixel formats are now available in the graphics driver. Prior to this, it
was not possible to h/w accelerate YUV images and a black screen would be displayed.

7.3 IR AND FRONT PANEL DRIVER

The IR input driver has been modularized to allow run-time selection of the IR protocol and IR keycodes
mapping file. The default IR protocol and keycodes mapping file are still defined in the build system, but
the user can now override this default at compile-time and/or run-time. This means that it is now possible
to change the protocol used at run-time without having to recompile DirectFB.

The run-time selection is available with the following DirectFB config options:

bcmnexus-ir-protocol

bcmnexus-ir-keycodes

By default, the STB platforms will use the “RemoteA” keycodes and IR protocol whereas the newer DTV
platforms will use “Generic” instead. “Generic” is used with the Broadcom small silver handset on DTV
platforms like the BCM935230 and BCM935125. “RemoteA” is the One-For-All handset or black slim
handset and is used on all STBs and older DTV platforms like the BCM93556.

If the user would rather use the silver handset to control STBs, then the “CirNec” IR protocol and
keycodes file can be specified at run-time.

Example1: Choose silver handset (NEC protocol) on a STB:

./rundfb.sh df_input --dfb:bcmnexus-ir-protocol=CirNec,bcmnexus-ir-
keycodes=CirNec

Example2: Choose silver handset (NEC protocol) on a BCM935230 DTV platform:

./rundfb.sh df_input –dfb:bcmnexus-ir-protocol=BrcmGeneric,bcmnexus-ir-

keycodes=generic

The choice of the IR protocol name can be found in the “DirectFB-
1.4.1/inputdrivers/bcmnexus/core/bcmnexus_ir_inputmode.h” header file. This is an auto-generated
header file that extracts the name of the input modes from Nexus. The choice of IR keycode mapping file
can be found in what keycodes modules are built and present in the /usr/local/lib/directfb-1.4-
0/inputdrivers/bcmnexus” target directory. For example, if “libdirectfb_bcmnexus_ir_keycodes_cirnec.so”
is present, then “cirnec” can be specified as the keycodes mapping file at run-time.

If the user wishes to support a different IR protocol or handset, then a new keycodes mapping file will
have to be created and added to the DirectFB build system.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 43 of 50 Company Confidential

If the user would like to override the default IR protocol and keycodes file at build time, then the following
environment variables can be set to override the defaults:

 DIRECTFB_IR_PROTOCOL=xxxxx

 DIRECTFB_IR_KEYCODES=yyyyy

NOTE: The default IR protocol is “BrcmGeneric” on the BCM935230 and BCM935125
platforms and “RemoteA”on all other platforms. The default IR keycodes setting is
“generic” on the BCM935230 and BCM935125 platforms and “remotea”on all other
platforms.

The front panel and IR receiver drivers have now been updated to mimic the behavior of a keyboard by
default. This means that if the user presses a key, a single DIET_KEYPRESSED event is generated and
when the key is released a single DIET_KEYRELEASED event is generated. If the key is held down for
longer than the “skip” count, single DIET_KEYPRESSED events are generated with the DIET_REPEAT
flag set.

If the user would like to revert to using the original mechanism whereby both DIET_KEYPRESSED and
DIET_KEYRELEASED events are generated together, then the following runtime DirectFB options can be

specified in the directfbrc file (or set in the DFBARGS envar):

bcmnexus-ir-timeout=0

bcmnexus-key-timeout=0

The list of all IR and KEYPAD options can be found at run-time by using the help option:

e.g. ./rundfb.sh <app> --dfb-help

For example, the IR repeat filter time can be specified with the following run-time option:

 bcmnexus-ir-repeat-time=xxx

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 44 of 50 Company Confidential

7.4 SYSTEM DRIVER

The system driver has been re-architected to better support multi-process applications. The “master”
DirectFB application handles all Nexus surface creation and destruction in addition to Nexus memory
allocations/freeing. On top of this all Nexus display calls are routed to the “master” DirectFB application to
ensure that only one process receives the callbacks.

The screen part of the system driver has now been updated to support the DirectFB Encoder API. The
functions “SetEncoderConfiguration()” can now be used to specify the output resolution, frequency and
scanmode. Prior to this API being implemented, the user could only specify the video output resolution
and not whether 50Hz/60Hz output should be made available (using the “SetOutputConfiguration()” API
call).

Support for 1080p/720p 24Hz / 25Hz /30Hz has now been added to the system driver. The user can now
specify either one of these resolutions at startup using the DirectFB configuration run-time option
“res=xxx”. Alternatively, one of these video output resolutions can be chosen using either of the above
API calls. To see this in action, the user can run the “df_andi” test application and press the “O” button on
the target platform‟s USB connected keyboard. Each press will cycle around a different Output resolution.

The layer handling code inside the system driver has been overhauled to support multi-process
applications better. It now issues linux fusion RPC calls from DirectFB clients to the “master” DirectFB
client when the graphics framebuffer needs to be set or when display settings need to be adjusted.

7.5 IMAGEPROVIDER DRIVER

The ImageProvider() driver for Nexus has been overhauled to use internal DirectFB APIs, rather than
using Nexus surface and graphics calls to blit from the decoded output to the final destination surface.
This means that the DirectFB graphics driver is used to perform the blit (or stretch blit) from the decoded
surface to the final destination surface. This change was necessary to support the new packet-buffer
graphics APIs and to allow multi-application DirectFB to work reliably. The changes to support this,
required a new DirectFB pixel format to be added called DSPF_ALUT8. This format is what the still image
decoder (SID) hardware outputs for palletized images.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 45 of 50 Company Confidential

7.6 PUBLIC API CHANGES

Table 6 – Public Function API changes

Function Change

FillTrapezoids() This is a new API that has been added to DirectFB to allow Trapezoids to be
drawn using either hardware acceleration or software fallbacks.

BatchBlit2() This is a new API that allows for dual source batch blitting to be accomplished.
Two source surfaces can be specified during the blits along with an output
surface and the two source surfaces can be blended together.

DumpRaw() This new surface API allows the surface contents to be dumped out in RAW
ARGB format.

Dispose() This new font API allows the resources of a previously opened font to be
released whilst still allowing the font handle to be used and left open. Its
purpose is to allow applications to better manage fonts and their memory
requirements.

Table 7 – Public Definition API changes

Definition Change

DSPF_LUT4 A new pixel format known to cater for 4-bit lookup tables (palettes) has been
added.

DSPF_ABGR This new pixel format is necessary to support VC-4‟s texture pixel output
format.

DSPF_ALUT8 This new format is necessary to support the still image decoder‟s output.

DFBSurfaceDescription The “preallocated” structure inside this structure has been increased to hold 3
buffers along with a handle. This change is necessary to support VC-4
OpenGLES 2.0 applications.

DFBWindowEventFlags A new flag called DWEF_REPEAT has been added to allow the repeat event to
be received for windows.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 46 of 50 Company Confidential

8 TEST NOTES

8.1 TESTING THE IR INPUT

DirectFB can accept input not only from a USB keyboard or mouse, but also from an IR handset. The
current DirectFB IR driver supports the standard “One-For-All” programmable remote control that comes
with the set-top reference platform and older DTV platforms. The remote control needs to be set to
“Cable” (CBL) or “STB” for DirectFB to recognize the key presses.

For newer DTV platforms like the BCM935230 and BCM935125, the DirectFB IR driver can support the
NEC protocol as used in the “silver” Broadcom “generic” remote control. Set-top reference platforms can
also support this protocol if they specify the “CirNec” IR protocol and keycodes mapping at run-time.

The best application to test the IR remote control is “df_input”. You can run this test application by
entering in the following command:

cd /usr/local/bin/directfb/1.4

./rundfb.sh df_input

Then you can press any key on the handset and you should see the name of the key and key code
displayed on the display. If the key is held down on the remote control, the repeat event should be set.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 47 of 50 Company Confidential

8.2 TESTING THE FRONT PANEL INPUT

The front panel input can also be tested in the same manner as for the IR input. However, there is a
known issue with the Nexus/magnum drivers that requires the LED controller to be initialized first. Instead
of placing the burden on DirectFB to initialize the LED controller (which could interfere with an application
that already opens the LED controller), it was decided instead to wait for the drivers to rectify this
initialization problem. As a result, it is necessary to run a test application first to initialize the front panel
LED controller prior to running any DirectFB test application that requires front panel input control. The
nexus “frontpanel” example application is recommended to be run first prior to running the require
DirectFB application.

Example:

./nexus frontpanel

./rundfb.sh df_input

NOTE1: This assumes you have already compiled the Nexus example applications and have
copied the executables and “nexus” script to “/usr/local/bin/directfb/1.4”. If you are unsure
of how to compile the Nexus example applications, then please refer to the document
“Nexus_Usage.pdf” that should be part of the reference software release.

NOTE2: The BCM935230 platform does not have support for the keypad driver at this time.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 48 of 50 Company Confidential

8.3 TESTING DIFFERENT BLITTING AND DRAWING MODES

There is a specific test called “df_brcmTest” that runs through many different blitting/blending and drawing
operations with the hardware acceleration output displayed in a window on the left-hand side the screen
and the software fallback mechanism displayed in its own window on the right-hand side the screen (side-

by-side for comparison). The user simply needs to press the <OK> or <SELECT> key on the IR handset
to progress through the different tests.

The test also accepts setting the “blittingflags” and “drawingflags” environment variables to test additional
blitting and drawing scenarios (such as Destination color keying). For example, to test source color
keying on all blitting/blending test cases, you need to set the “blittingflags” environment variable as follows
(prior to running the test).

export blittingflags=0x08

To test destination color keying for all blitting test cases, you need to set the environment variable as
follows:

export blittingflags=0x10

NOTE: These values are determined by looking at the “DirectFB-1.4.1/include/directfb.h”
header file and reviewing the “DFBSurfaceBlittingFlags” typedef.

The test defaults to an ARGB pixel format for the graphics layer/plane, but any valid pixel format can be
set by modifying the df_brcmTest.c file in the “DirectFB-1.4.1/tools” directory and setting the following
define to the required format:

#define PRIMARY_PIXELFORMAT DSPF_XXXX

Where: XXXX is one of the pixel formats as defined in “DirectFB-1.4.1/include/directfb.h”.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 49 of 50 Company Confidential

8.4 PERFORMANCE TESTS

Both “df_andi” (Penguins) and “df_dok” are good benchmarking tests to check the overall graphics
performance of the target platform.

“df_andi” measures real-world blitting performance by seeing how many penguin blits can be sustained at
a given number of frames per second. The graphics performance is proportional to the number of
penguins and fps (frames per second) displayed at the top left-hand corner of the screen. The number of

penguins can be increased by pressing the <S> key on the target platform‟s USB keyboard. Also, the

number of penguins can be decreased by pressing the <D> key on the keyboard. Pressing the <SPACE>

bar will cause the penguins to form a logo and pressing <R> will cause them to revert to moving around

the screen. Pressing <P> will power down or power up the screen. Pressing <O> will cause the output

resolution to change. Pressing <Q> will quit the application.

“df_dok” is a true benchmarking test that measures CPU load and graphics blitting / drawing performance.
It shows the CPU load in square brackets along with a print out of the number of graphics operations per
second of each test (e.g. Mpixels/s, Kchars/s).

NOTE: There will be a significant difference in CPU load when running DirectFB in release
mode vs debug mode. To obtain the best results, always build DirectFB with DEBUG=n
(release mode).

NOTE: Building the Nexus and magnum drivers in release mode (DEBUG=n) will also
provide a significant increase in some hardware accelerated operations.

Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

DirectFB 1.4.1 Phase 3.0 Software Users Guide 18-Mar-2011

Page 50 of 50 Company Confidential

8.5 SUPPORTED PLATFORMS

The table below lists the DTV and Set-Top platforms that this release of DirectFB supports.

Table 8 – Supported Platforms

Platform Comment

BCM93548 DTV ATSC market

BCM93556 DTV DVB-T market

BCM935230 DTV ATSC / DVB market

BCM935125 DTV ATSC / DVB market

BCM97019

BCM97125

BCM97208

BCM97231

BCM97325

BCM97335

BCM97336

BCM97340

BCM97342

BCM97344

BCM97346

BCM97400

BCM97401

BCM97403

BCM97405

BCM97408

BCM97413

BCM97420

BCM97422

BCM97425

BCM97468

BCM97540

BCM97550 .

 Con
fid

en
tia

l to
 B

ro
ad

co
m C

or
po

ra
tio

n

